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ABSTRACT

A svmplectic module is a finite group with a regular antisymmetric form. The
paper determines sufficient conditions for the invariants of the maximal
isotropic subgroups (Lagrangians), and asymptotic values for a lower bound of a
group which contains Lagrangians of all symplectic modules of a fixed order p”.
These results have application to the splitting fields of universal division
algebras.

1. Introduction

In a recent paper of the authors on finite-dimensional division algebras and
their splitting groups [4], we reduced that subject to problems on abelian groups
with skew-symmetric forms (symplectic modules) and their maximal isotropic
subgroups, see ¢.g. [4] theorems 4.2 and 4.4, and asymptotic values of some of
the results of sections 7 and 8 of the present paper were already applied in
sections 6 and 7 of [4].

The symplectic modules appeared first in connection with classification
problems of differential topology, see e.g. [1, §19] and {5, §4), and their structure
was easily determined (also in §4).

The main object of the present paper is the study of the maximal isotropic
subgroups of a symplectic module G, known as Lagrangian subgroups of G. The
problem of determining all Lagrangians seems to be very difficult, and in fact we
give a complete answer only in the homogeneous case (Corollary 5.5), but we do
get some bounds for the elementary divisors of Lagrangians (Theorems 5.5 and
7.5). These are applied to two problems: (1) To obtain a lower bound for an
abelian group G, which contains at least one Lagrangian of every symplectic
module of order p”; it is shown (Theorem 6.1) that |G,|= p'"/ o™,
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(2) To get conditions for a group to be contained in two different symplectic
modules (Theorem 8.2). Both results were used in [4] Corollaries 6.7 and 6.9 and
Theorem 7.4.

2. Basic results

To make this paper independent we repeat some of the required definitions
and review some of the basic properties needed. We shall restrict ourselves only
to finite groups.

2.1. A skew symmetric form on a finite abelian group G is a bilinear skew
form: ( ., ):G X G—Q/Z into the rationals mod 1 (the roots of unity).

We make correspond to this form a homomorphism A :G— G, where
G = Hom(G.Q/Z). the dual group of G, given by A(g)(£) = (g. £) for g € G and
every £ € G. The form is regular if A is an isomorphism, but since we restrict
ourselves to finite groups, and to Q/Z. regularity is equivalent to injectivity of A,
ie. (g G)=0if and only if g =0.

2.2. Let P C G be asubgroup of G, we denote by ( , )» the restriction of
the skew form to P, and by Ap, the map A, : G — P obtained by restriction of A to
P.

The group G is called a symplectic (Z-) module if the skew form defined on G
is regular. A subgroup P is a regular subgroup if the restricted form ( , ), is
regular on P.

The orthogonal subgroup of P is defined by P"={g € G; (g, P)=0}, i.e.,
Pt =KerAp.

For subgroups P of G we show:

ProrosITION.  If G is a symplectic module and P C G then
(1) |P||P*|=|G| and P** = P;
(2) if P is regular then P is also regular, G =P @ P"' and

(P +q.p2+q:)=(pi,p2)+(q:.q:)  forp. EP, g EP".

PROOF. Let P be the dual of P, then the map A : G— P is surjective. Indeed,
any character on P can be extended to a character on G, and since G is
symplectic, this can be realized by an element g € G, i.e. A-(g){(p)=(g,p) for
every p € P, which means that A, is surjective. Clearly, by definition, Ker A, =
P';hence |G|=|P*||P|=|P"'||P|. Finally, P** 2 P, and from the first part we
conclude that |P**|=|G||P*|"' =|P]|, hence P** = P.
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The second part is well known (e.g., [S] lemma 1), and we repeat the proof:
Let g €G, A-(g)E P and since P is regular there exists p € P such that
Ar(g) = Ar(p), i.e. Ap(g —p) =0, which means that g —p € P* and that G =
P+ P'. Also if pE€ PN P*, then Ax(p)=0 and since P is regular, p =0, i.e.
G=P&HP".

Now P* is regular: for any x : P*— Q/Z can be extended to a character of G
by setting y (P)=0. Since G is regular, there is a g € G such that x(h) = (g h)
for h € G. But y(P) = 0implies that g € P*, which means that P* is regular.

We refer to a decomposition G = P, @ - - - @ P, as an orthogonal decomposi-
tion if P, C P} for all j#i.

2.3. A subgroup K C G is isotropic if K'DK, ie. (K,K)=0, and it is
Lagrangian if it is maximal isotropic, equivalently K* = K, since otherwise the
subgroup generated by K and an element of K" is also isotropic.

ProPOSITION. The Sylow subgroups G of G are regular subgroups, and
G =@ G" is an orthogonal decomposition. Moreover, K is Lagrangian in G if
and only K = @ K" and each K = K N G*® is Lagrangian in G for all p.

Indeed, if g€ G® and h € G is of order m, with (m,p)=1, then let
1=rp*+sm, (gh)=(rp*+sm)(g,h)=r(p°g,h)+s(gmh)=0. Hence G*"
contains all elements of order relative prime to p, which in the abelian case form
a subgroup G, and |G*®’|=|G|:|G®|. One then readily shows that G =
G®@ G®, and by the earlier observation the sum is orthogonal. The rest of the
proof follows now by standard computations.

3. Lagrangian submodules
We begin with a few elementary properties of Lagrangian submodules of a

symplectic module G.

3.1. PRrOPOSITION. A submodule H C G is Lagrangian if and only if the
following sequence is exact:

G.11) 0— H—" G~ H—>0

where iy is the injection, and Ay the induced map by the skew form of G.

Proor. If H is isotropic, then (h,H)= A,(H)=0 for h € H, and hence
Ker Ay D H. The map A4 is also onto, since the sequence 0— H— G yields the
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surjection G — H—0, and Ay is the product G 2 G — H, and therefore it is also
a projection. If g € Ker Ay then (g, H) = 0 and the maximality of H implies that
g € H which proves the exactness. The rest of the proof is clear.

Immediate corollaries of the exactness of (3.1) are:

CoROLLARY. (a) If H is Lagrangian in G, then |G|=|H[ and
tk H=rk G =2rk H.

(b) If H is isotropic and |G| =|HY, then H is Lagrangian.

The result (a) is immediate, and for (b) we note that since H is isotropic the
sequence of (3.1.1) is a zero sequence, and |G |=|H "= |H|-| H| yield that it is
exact,

Later we shall see in §8 that the inequality of the corollary cannot be
improved.

3.2. The following will be needed later:

LEMMA. (a) Let H be Lagrangian in G and M D H, then M D HDO M" and
the form of G induces a regular skew form on M/M" in which HIM" is
Lagrangian.

(b) If G = P, P is an orthogonal decomposition into regular submodules of G,
and H is Lagrangian in G, H N P, is Lagrangian in P, then H N P, is Lagrangian
in P,.

Proor. Since M C H, H=H"2M*, and in M = M/M" define the form
(7,G) = (p,q) for all p,q € M and where p,§ denote their class in M. The proof
of (a) is then straightforward.

To prove (b), we note that if h € H and h = p, + p,, p; € P,. Then

0=(h,HﬂP;)=(p1,HﬂP.)+(p2,HﬂP1)=(p1,HnP.)

since p, € Py, but H N P, is Lagrangian in P,, hence p; € H N P,. Consequently
p2=h—-p €EHNP, and thus H=HNP)HHNP,). Clearly HN P, is
isotropic and its maximality follows by computing the order of |H N P;| and
applying the preceding corollary.

3.3. An attempt at determining the Lagrangian of a symplectic module G
will be made in the last section, but at this stage we can give some sufficient
conditions.
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ProposITION. If H and K are two Lagrangians of G. then H/{(HNK)=
K/(H N K); namely, both are extensions of the same group by H N K.

Proor. Since H.K are Lagrangians in G, we have two exact sequences.

'k Ak 5 'n An

331 0—K—G-—>K—0, 0—H-—>G—H—>0.

Consider the map ¢ = Auix, then clearly Ker¢ = K N H. Now
o(K)={h € H;3k €K, (k.n)= h(n)forevery n € H}.
Since K is isotropic and K D K N H, we have (K, K N H)=0 and, therefore,
e(K)YCA(KNH)Y ={h€H;R(KNH)=0}C H.

Consider Ay (K N H)' (C H), and we show that it is isomorphic with (H/H N
K). Indeed, these are the characters of H which vanwﬂ K, and as such
they can be ide/nti@mturally with a subgroup of (H/H N K). Moreover, any
element of (H/H N K) can be extended to H and vanishes on HN K and
therefore will belong to A, (K N H)". Hence,

T T
[A(KNH)'|=|HIK NH)|=|H/I(K N H)|z|e(K)|-

But |[H/(KNH)|=|K/(KNH)|=|K/Ker¢|=]|¢(K)|. Hence we have the
equality, from which it follows that ¢(K)= H/(H N K)= H/(H N K) and thus
¢ induces the isomorphism K/(H N K)= H/(H N K).

Note that this isomorphism is not canonical since it is a composition in which
one of the maps is between an abelian group and its dual, which is not canounical.

4. Constructions

Given a finite abelian group H, it is easy to construct a symplectic module,
denoted by Si(H) in which H is Lagrangian.

Let H be the dual group of H and consider Si(H)=H®H. In S\(H) we
define a bilinear form:

(h+eLht+@)=eh)—exh); hEH ¢€EH

4.1, THeoreM. S.(H) is a symplectic module and H is Lagrangian in S,(H);
conversely if G is a symplectic module then G = S,(H) for some Lagrangian
submodule H, and the isomorphism is an isomelry.

The proof of the first part is immediate. The second part is well known
([11,[5)), and for completeness we indicate the proof:
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Let G be of exponent m, and let g € G be an element of order m, then
G =(g)P G.. We then have g € G which satisfies g(g) = 1/m, §(G,) = 0; since
G is regular, let g’ € G such that (g'.n) = g(n) for all 5 € G. One easily shows
that {g)D(g’) = G, is a regular subgroup of G, with (g) a Lagrangian subgroup.
Hence by Proposition 2.2, G = G, G, and the rest of the proof follows easily
by induction by showing G, = $\(H,) and G = Si{H, +(2)).

An immediate consequence is:

CoRrOLLARY. A finite abelian group G can be defined to be a symplectic module
if and only if tk G is even, and its elementary divisors appear in pairs. Moreover, if
G.G' are two symplectic modules which are isomorphic as groups, then there is an
isometric isomorphism between them.

The first part of the theorem follows from the theorem, since G = S,(H)=
HPH=H®H and so tk G =2rk H. Conversely, if G has even rank, with
elementary divisors which appear in pairs, then G = H@ H for a subgroup H
whose elementary divisors take one of each of G’s, and finally G = HP H =
S:(H)and the isomorphism can be used to turn G into a symplectic module.

The second part follows from the fact that if G=G' and G = S,(H),
G'=S(H"). where the last two are isometric maps. Then clearly H = H’ and
this isomorphism can be extended to an isometry between S,(H) and S\(H') as
required.

4.2. A description of all Lagrangians of Si(H)= G, which is complementary
to Proposition 3.3, is the following:

Let Q C H be a given subgroup of H, and let ¥: QO X O —Q/Z a symmetric
bilinear form on Q (not necessarily regular), and let P=Ker¥ =
{g € 0. ¥(0Q.9)=0} )

Consider the subset Ky C S\(H). consisting of all g=q+¢. €0, p €H
such that ¢ (¢) = V(q.¢) for all £ € Q. Since ¥(q, P) =0 it follows that necessar-
ily ¢ €P' ={p € H; ¢(P)=0}. One readily observes that Ky is a subgroup of
Si(H), and we prove:

THEOREM. (a) K. is Lagrangian in S\(H) and P = K. N H.
Conversely,

(b) If K is Lagrangian in S\(H), then there exists a subgroup O C K and a
symmetric form ¥ on Q, such that K = Ky and KN H =Ker V.

PrOOF. Let g+ ¢ € Ky, i = 1,2, since ¥ is symmetric:

¢1(q:) = V(q1.9:) = ¥(q:2.q1) = @2(q)).
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Hence, (q)+ ¢1.9:+ ¢2) = ¢©1(q2) — ¢2(q1) = 0 which proves that Ky is isotropic.
To prove it is maximal, it suffices to show, in view of (b), Corollary 3.1, that
|K+|=|H|. To this end, we consider the map ¢ : Ky— H given by e(g + ¢) = ¢.
First, we observe that Ker ¢ = P. Indeed, let q € Ker ¢, then g +0 € K, which
yields 0=(q,Q), i.e. ¢ €Ker e = P. The same argument in the opposite direc-
tion leads to Kere D P, and thus Kere = P, and clearly P = Ky, N H. Next,
Ime = P': the definition of Ky implies immediately that Ime C P'. Let
@ € P* C H. then @ | O vanishes on P s0 ¢|Q induces a well-defined character
on Q/P. Since ¥ induces a regular symmetric form on Q/P, it follows that there
exists § € Q/P such that (g, &) = ¢(£) for all £ € Q/P. By definition ¥(g,£) =
¥(q.£)and (&) = (&), hence q + ¢ € Ky. This proves that ¢ induces the exact
sequence 0— P— Ky— P*—0, and hence |K|=|P||P"|. Noting that P' =
(H/P), we finally obtain that |K|=|P|=|H/P|=|H| as required.

Conversely, let K be Lagrangian in Si(H), then every element of K can be
written k =q+¢, g€ H, ¢ € H Let Q = ¢,(K) where ¢, is the projection:
S\(H)— H, on the first component of HGBH, ie.e(gte)=q Letq + ¢ EK,
i =1,2, then since K is isotropic, we have

(g: + ¢1.g-+ @)= (Pi(ql)— ‘Pl(ql) =0.

We define W(q:.q9:) = ¢i(q2) = ¢:(q:) and prove that ¥ is a well-defined
symmetric form on Q (independent of ¢, or ¢.). For, if g/ + ¢, and . + ¢ 1 € K,
then k = ¢, — ¢ € K, hence for every q € Q, we have q + k € K and by the
isotropy of K, we have

O0=(g+koe—01)=—0dq)+¢ilq),

which proves that ¥(q.q.) is independent of ¢,. Clearly the definition also
implies that ¥ is symmetric.

To prove that KN H =KerV¥, let g €EKerV¥, then q+ ¢ € K for some
@ € H, for every ¢ € Q there exists E+p €K, and hence ¥(q,&) = ¢ (£)=0,i.e.
¢ €Q". But then in Si(H), 0+ ¢,¢+p)=¢(£)=0, so ¢ €K' =K. Conse-
quently ¢ = q + ¢ — ¢ € K, and this proves that Ker ¥ C K N H. Conversely, if
q €EKNH then for any £é+p €K, (q.£€+p)=0 since K is isotropic, but
(q.6+p)=—p(q)=V(q,£)=0,ie. g EKer¥.

Finally, K =K, because for every q+9 €K and ¢+p€K, 0=
(4 + 9.+ p) we have p(q) = ¢(£) = ¥(q,£) as required.

ReMArRk. The previous method shows how to construct Lagrangians K C
S:(H), and one such that K N H is a prescribed subgroup P C H. To this end
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one has to find a subgroup Q C H for which one can find a symmetric regular
form on Q/P. If this is possible, then the form induces a symmetrical form on Q
and apply the previous result.

Unfortunately, the last result gives very little information on the structure of
the various Lagrangians of S,(H), and in particular their elementary divisors
which are the major tool in the applications in [4]. We turn to two different
methods to obtain such information:

5. Almost homogeneous symplectic modules

In view of Proposition 2.2 we can focus our attention on abelian p-groups. We
use the following notation: Let K = (k))& - - - @ (k.) be the decomposition of K
into cyclic p-groups in which (k;) is cyclic of order p’; we arrange them in the
order f,Zf,Z ---Zf,; the integers p/ are the elementary divisors of K. We
shall deal with the ordered set (f., f>,...,f.) and refer to them as the invariants of
K and write inv(K) = (fi, f.,. . ., f;). Often we allow one to increase the number of
invariants by adding zeros, which is equivalent to adding generators k; =1,
which generates the trivial group.

51. If K = (k)@ P (k) we shall denote by {k;} the dual generators of K,
where k; is given by k:(k;) = 8;p7%. If G is a p-symplectic module, then by 4.1 its
invariants come in pairs, and we shall write its invariant set as invG =
2(ey,...,¢.). Note that if G = S,(H) then invH = (e),e3,...,¢,).

REMARK. We quote a well-known result which will be used in the context: If

inv G = (fi,...,f.) then the invariants of subgroups and of homomorphic images
are not greater than the respective invariants of K.

5.2. Denote G, ={g€ G;p™g =0}.

PROPOSITION. Let G be a p-symplectic module with invariants inv G =
2(ei, e2,...,¢,), then:

(@) inv G, =2(m,m,...,m,e..,...,e,) where ¢, >m = ¢;.,.

(b) invp™G =2(es—m,...,¢; — m,0,...,0).

(©) If G 2 p°G then inv(G../p°G)=inv G, —inv p*'G as vectors.

(d) G.=p"G; (p"G)" = G..

PrROOF. Let {g} be a set of independent generators of G, then {p™g.} is a set
of such generators of p™G, and {p“ g} for e, > m is a set of independent
generators of G,. This readily proves (a), (b) and (c).
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To prove (d), we consider the equality (p"g, G) = (g,p"G), for g € G, hence
(g,p"G)=0if and only if p™g =0. Hence (p"G)" = G...

Taking the orthogonal of both sides of the preceding equality, we get
(p"G)"* = G, hence G, =p™G by Proposition 2.2(1).

5.3. Let G be a symplectic module with inv G = 2(e,,....e,) (tk G = 2r), and
let K be a Lagrangian submodule of G. If rk K = s then by Corollary 3.1, s = 2r,

so we henceforth write inv K = (fi.fs,....f2), fi2 -+ = f,, and set f; =0 for all
j>s.

LEMMA. ¢, = f|; Gf‘ D) K 2 pf‘G; PIZ'G 2 K D sz:'

PROOF. e, = f, since e, is the exponent of G and f, the exponent of a
subgroup.

Next, p"'K =0, i.e. K C Gj, and passing to the orthogonal of these groups, we
obtain K =K' G2 p"G by (5.2).

The last relation is trivial if f,, = 0, so assume f,, > 0. In this case, K N G;, =
K;, is a homogeneous abelian group of rank 2r and exponent p”. This is also
true for Gy, since ¢, = f>, by the remark of 5.1. Since K, C G,,, we must have
equality, which yields K D Gy, Passing to the orthogonal we obtain, as before,
p>»G D K.

COROLLARY. f|+f2i.2_ei_—>:f21—1+f2,, i=1,2,...,r.
Indeed, from (5.2) we have

ianfz'G = (el _flr,el —f277~~-yer -‘f2'7e' —fz’)’

then by Remark 5.1, the relation p>G D K yields f-i_, = e; — f5,. Similarly, the
relation K D p''G yields f> Z e — fi.

The last result yields a classification of all Lagrangians of symplectic modules
of rk2 and rk4:

ProposiTiON. (1) If G is symplectic and inv G = 2(e,) then K is Lagrangian in
G if and only if invK = (f,,f.) with fi+f,=e,.

(2) Let inv G =2(ei, ¢;) and inv K = (fi, f>, [+, f) then K is Lagrangian in G if
and only if

fith+fi+fi=ete, f1+f2—301§f1+f4§ez.

Proor. For the first part, it follows immediately from the lemma and its
corollary that necessarily f,+f,=e,. The existence of Lagrangians with in-
variant (fi,f,) was shown in the proof of 5.2.
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The “only if’" part of (2) follows from the lemma and its corollary. The group
K C Si(H)= G which is Lagrangian with the required invariant is the following:
Let H = (h)& (h,), then K is generated by:

k, =p('7f'h|*pf‘h:, k:=pe’_f3f;|+Pf"ﬁz~
k_‘ = p":_".\h21 k_‘ = pe:'ﬁ};:.

(Note that e = f; and even e, Z f, + f, follows from the equality and inequality
hypothesis of (2) of the proposition.)

5.4. The following is fundamental for an induction process to be used in
proving the main result of this section:

LEMMA. Let h € KN p "G be of maximal exponent p", then there exists f;
j# 1, such that e, = f, + f;; and there exists an orthogonal decomposition G =
G, G: with the following properties: G; are regular submodules, inv G, = 2(e,),
invG.=2(e,....e.); Ki=KNG, is Lagrangian in G; and invK, = (f.f),
inv Ky =(fi.for.. . fr.... f2r) (Where f means f is omitted).

PrROOF. Let h =p“ g and as h is of order p”, g must be of order e,. G is
symplectic so there is g’ € G such that (g,g')=p™, hence (g)P ()= G, is
readily shown to be a direct sum and a regular submodule. It follows now by
Proposition 2.2 that G = G, G., with G; regular submodules. Let h'=
p''g’ € p" G’ which is also an element of K by the lemma of 5.3. Moreover, h’'
must be of order p“~ and thus (k)@ (k') C K N G, is an isotropic submodule of
order p/™“™"'= p*. Consequently K N G, = (h)@ (k') and it is Lagrangian in
G, by Corollary 3.1. Apply Lemma 3.2 and we have K = (KN G)PH (K N G>)
and K N G, is Lagrangian in G.. The invariants of K are uniquely determined
and are equal to inv(K N G,) U inv(K N G,), and since inv(K N G\) = (fi,e. — f)
there exists f; such that e, — f, = f. The rest of the lemma follows now easily.

5.5. A symplectic module G will be said to be almost homogeneous if
invG =2(eie,...,e) where e, Ze: ie. all its invariants are equal with the
possible exception of the first invariant e,.

Our main result in this section is:

THEOREM. If G is almost homogeneous and K Lagrangian in G with
invK = (fi,fs....f>) then for k =1.2,....r

e = fk +f27—k+l =e.

ReMARK. Since |K['=p*™"*2 it follows that Zf, =e +(r—1)e and,
therefore, we can have at most e, — e inequalities f, + frr—vs1 > e
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In the proof we will show simultaneously:

CoroLLARY. If G is almost homogeneous (as in the preceding theorem) and
e,=eore =e+1 then there is an orthogonal decomposition G = G, {--- P G,
with inv G, =2(e,), inv G, =2(e), and a decomposition K =K, H---PK,
where K; = K N G; is Lagrangian in G.. Furthermore, inv K; = (f,..f..), Ai > pi and
e=f+f, (Ai=1),e=f+f, fori>1

Let ¢ = e, — e; we prove both results by induction on the pairs (r,c) arranged
lexicographically. The case r=1 (and necessarily e, =e) is simple, since
rk K =2 by Corollary 3.1, inv(K) = (fi.f-); and as |K|'=|G]| it follows that
fitf=e (=e).

Assume r > 1, then we have from Corollary 5.3 that f, + f., = e, and K C p"»G
by 5.3. Consider first the case that f, + f», = €,, and choose h € K of maximal
order; then we have h € p*G = p“"G and we can apply Lemma 5.4 to
conclude that G = G, @ G,, and inv(K N G)=(f..f;), fi+fi=e.

The main lemma 5.4 yields also that K =(K N G)P(K N G:), KNG is
Lagrangian in G,, and inv G, = 2(e,...,e). We apply now the induction on G
whose rank is 2(r — 1), and prove both the theorem and the corollary.

Next we assume that f, + f,, <e,, and that e;,—e =c =2:

We notice that the relation G, 2 K 2 p"G yields G.., D K2 p“™'G since
fi=e, —1. We apply the relation p™'G =(G,,-1)" to (a) of Lemma 3.2 and
obtain that K/p~'G is Lagrangian in G._,/p“~'G. Now by Proposition 5.2,

inv(G.,/p"'G)=2(e.— 1,e,...,)—2(1,0,...)=2(e: — 2,e,...,€).

Induction can be applied to these groups, since e,—2Z e and (e, —2)—e<e —e
by assumption. Let inv(K/p“~' G) = (fi,...,f); by Remark 5.1, f, Z fi, and thus

fk+ fz,—k+1 = fL+ fér—k-fl Ze.
To prove that fi + f2r-x1 = € we note that 2 fi = Z fi+2 from the equality
|K|=|K/p5"'G||p"™'G]
and therefore = (fi — fi) = 2. Thus
fk + f2!—k+l = (fk _f;<)+ (fzr—k+1 _f;r—k+l)+f;&+f;r—k+l =2+ (81 - 2) = €
and the proof is completed.
Finally, we have to consider the case e,—e =0,1:
Corollary 5.3 yields e, = f,+ f>, Z ¢, hence either fi+ fo, =e;or fi+ fo, =e. In

case fo, = e, — f, we are in the first case of our proof which was carried out in the
beginning. We are thus left with the case fi+f., =e¢ and e, =e +1.
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Let h € K C p/»G of the form h = p'g and h be of order p". Consider two
cases: (1) g €pG, (2) g&pG. In the first case h €p™'G and f,, +1=
e —fi+1=-e, —f, and we are again in the situation h € p™'G which was dealt
with in the beginning. Finally, we assume g& pG; if p*"'g € p°G then p*~'g =
p°g' and so g — pg' € G._. Our group G is almost homogeneous, then necessar-
ily G._, C pG and therefore g — pg’ € pG so g € pG which contradicts our case.
Hence, p*'g& p°G and consequently, G, = (p°G) £ (p°'g)", or else G; =
p°G2(p'g)*Dp'g a contradiction. We have therefore g'€ G. with
(g'.p° 'g) #0; and hence g’ must be of order p* exactly. Moreover (g'.g)=p~°d
for some d# O(mod p).

Consider now the group G, = (g)9 (g') where the sum must be a direct sum;
it is a regular subgroup with inv G, =2(e). Furthermore, the chosen element
h =p'g has order e —f,, which is equal to f, by assumption and h'=
p'g'€p"G C K will generate a Lagrangian (h)@(h’) in KNG, with
inv(K N G\) = (fi,e = fi) = (fi, f--). At last we apply (b) of Lemma 3.2 and obtain
K=(KNG)H(KNG,), KN G, is Lagrangian in G, whose rank is 2(r — 1)
and inv(G,) = 2(e,,¢,...,e). The rest will follow now by straightforward induc-
tion, which proves both the theorem and the corollary.

6. Bound for a universal group

We apply the previous result to give a lower bound for the order of an abelian
group which contains for each symplectic module G of order (p” ) at least one
Lagrangian of G. The bound is important for applications in [4] Theorem 7.4.

6.1. As we are unable to use all symplectic modules of this order, it suffices
for our purpose to confine ourselves only to almost homogeneous symplectic
modules of order (p")’.

Let 1= ¢ = n be an integer, then n = ¢, +[n/qlq, 0= ¢, < q. For each q we
construct the almost homogeneous symplectic module G, = G,(H, ), where H, is
the abelian group with

e 315 5

and rk H, = q, so tk G, =2¢, inv G, =2inv H,.
Let 4. = 9,, be a p-abelian group with the property:

For every symplectic p-module G of order (p" ),

6.1
(6.1n) there exists a Lagrangian subgroup K of G, such that K C 4.
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Note that rk ¥, = n. Indeed, there exists a symplectic module G = S,(H) of
rk2n, where H is p-elementary of rk n. Since %, 2 H, it follows that rk ¢, = n.
We denote the first 2n invariants of %, by (fi.f-.....f2). fiZ -+ = f., where
some of the last f; may be zero.

LemMMA. f, +f,.i=[n/q], and hence f, Zi[n/q].

Indeed, consider the symplectic module G, defined above, and K, its
Lagrangian which is included in %, Since rk K, =1k G, =2g let invK, =
(fi.....f5). with possibly f:, 20. By Theorem 5.5, fi+fi i1 =[n/q] for
k=1,..., g, and together with Remark 5.1 we obtain for k = ¢

’ ' n
fq +fq+1§fu+fq+lz [E]
and since f, = f,., we obtain f, Zn/q}].
Let {a} denote the first integer = & for @ > 0), then our lemma yle]ds
THEOREM. Let |4, |=p"™, then N(n)Z Z,=. (3(n/q]}.

Indeed, N(n)=ZXf, and f, Zi[n/q]> 0 for g = n and thus f, = {{[n/q]} and
this completes the proof.

REMARK. A slightly better lower bound can be obtained from the relation
fi+ f>= n, and where we do not use f,={n/2} and f,= {3[n/2]}. With this we
obtain (quoted in [4] p. 141)

N(n)z f, +fz+q§_;3fq 2n +q;{%[n/q]}-

The second lower bound is greater than the one of the theorem in n —{n/2} -
{t[n/2]} which one readily proves to be [n/4]. The proof is done by considering
the various cases of n =4m + k, k =0,1,2,3.

6.2. Next we obtain an asymptotic value for the sum S = £, {§{n/q]}. We can
write the sum for all q since for g = n the terms are zero:

TueoreM. S = Z.{i[n/ql} = Z_[n/(2j —1)] = in(logn +2y —1+log2)
+ O(\/n), y the Euler constant.

ProOF. For j =1, consider all integers g in the interval:
n <_n . 1=t oo
__2}' 1 <gq= —2j 1 or equivalently 2j—1= p j+1.

For these q’s we have 2j — 1 = [n/q] < 2j + 1, and therefore [n/q] =2j — 1 or 2j.
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Hence, {{[n/q]} = j. The number of these ¢’sis [n/(2j — 1)} = [n/(2j + 1)]. Thus:

§= 21([7]—1]—[2]'11])
Z[?;—l] Z(’ 1)[7]+1] Z[ ] 2[1—1]

To compute an asymptotic formula for the last sum, we use Dirichlet
computation of E[n/v]=nlogn +@2y—1n+ O(Vn) (c.g. [3] theorem 320):

ST EIEIEEA

=[nlogn+Q2y—-1n]- [glogg+(2y —l)g}+ O(\/Tz)

which completes the proof.
Noticing that [n/4] = n/4 + O(1), we obtain from the last remark that:

N(n)

COROLLARY. Let then N(n)Zin(logn+2y—i+log2)
+ O(\/n) and note that 2y —3+log2=1347>1.

7. Relations and generators

Let G be a p-symplectic module and K a Lagrangian submodule. Let
K=(k)® - @ (k) be the cyclic decomposition of K, where (k;) is cyclic of
order p, and invK = (fi,....f,), fiZf-Z - = f. We note that f, may be zero
and then the corresponding group is a trivial group.

7.1.  We aim to describe ¥ by a set of generators and relations using the exact
sequence:

(*) 0—K—G-—K—0

of (3.1):

THEOREM. A symplectic module G, with a Lagrangian K whose invariants are
(fi.fo.....f.) has a set of 2r generators ki, i =1,...,2r with the relations:
(7.1.1) (@) piki=0fori=1.2,..,r
() pik.i=Zoisik, i=1,..,r,
(1) S =(s;) is a skew symmetric integral matrix with
| 5| = 2min(p”, p").
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The skew form on G is given by:
(iv) (kik;)=0; (ko k)= = (ki ki) = 8;p 7
(k,+i, k”,‘) = = Si,‘p_(f"*.”i) l,] = l,. R &

Conversely, if G is an abelian group with the relations and generators given by
(i)-(iii} then G is a p-group, and the definition (iv) makes G a symplectic module
with Lagrangian K generated by {ki,... k.}.

PrOOF. Let G be symplectic, with Lagrangian K = (k,)@ - - @ (k,) and let
K=((k)®- - (k) be its dual decomposition; then consider the exact se-
quence (*) mentioned above.

Since A« is a surjection, let k7.; € G be inverse images of the dual base L, ie.
Ax(k’.;)= k. Then, by definition (k'..,k;) = 8;p %, and since k; has order p”, we
have p’k... € Ker Ax = K. Hence,

p"k’m = z siik;.

'

We have some freedom in choosing k.., so let k7.; = ki + 2., x;k; where x;
will be determined later, then we have for arbitrary y; the relation

plky.: = Z (s +xp' +ypk, i=1..r
“

since p'ik; =0, and we still have Ak (k') = ki, since 2 x,k; € K = Ker Ax.
Next, we choose the integers x;, y; so that

s = s+ xp' +yp”

will satisfy |s; | =imin(p”, p/i), which is clearly possible. Note also that if the
chosen element s; satisfies | s, | = smin(p”, p/), we do have the choice of the sign,
and then we set s; > 0if i >j and s; <0 if i <j. Thus we obtain (i)-(iii), except
the skewness of S. Since K is isotropic we have (k. k;) =0, for | =i,j = r. From
the fact that Ax(k".;)= k., we obtain two parts of (iv).

"

To compute (k’.., k'.;) we observe that
P!‘( i k’l’+i) = (kI:H‘, p/’k’:+j) = 2 Sia (k',’+,‘, k)\ ) = S,','p_f" (mOd Z)
Hence,

P”'(k e k)= sipTh = my, m; EZ,

(ki k)= sip™ % + mup™h,
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”

The form is skew symmetric, i.e. (k7. k7.;)= — (k7.;,k".;); we get by multiply-
ing with p/*/

si+ 8 = — mip" —mp'.

If |'s; | =|si| = imin(p”, p’'), then we have already chosen above s; +s; =0. In
other cases |s; | <imin(p’, p") and therefore

| mip" + myp" | =5y + i | =5y |+ | < min(p", p")
implies that s; +5; =0, i.e. § =(sy) is skew symmetric and also

(**) mp’ = — myp”.
Finally we set k,.; = k.; + Z;=, muk,. This leads to

plik,.i = 2 sik; + Z mup'k, = 2 sitki

since (*#) yields that myp“k, = — map’k, =0. Also by (x*):

(kikn) = (Ko + 3 mko, bty + 5 maks )
A I

=5ip %P+ myp™h — mp

SR

= S;p qed

The converse of our theorem follows by straightforward computations.

7.2. The preceding result, though it determines G with the aid of K and a
skew-symmetric integral matrix S, is hardly useful in dealing with problems
about G, its invariants or its other Lagrangians. Nevertheless, it will suffice to
give some necessary conditions for the invariants of the Lagrangians of a
symplectic module of the form S,(H).

To this end we recall relations between finitely generated abelian groups given
by generators and relations and integral matrices.

Let G be an abelian group generated by r elements gi,...,g. Consider the
projection ¢ :Z"— G given by ¢(e;) = g where ¢; is the standard basis of Z'. It is
well known that Ker ¢ is a subgroup generated by r elements a; = 2., axex,
i=1,...,r. (Note that if G is not a torsion group, some of the a;’s may be zero.)
We refer to the integral matrix A = (ax ) € M, (Z) as the matrix of relations (with
respect to the basis gi,...,g) (e.g. [6] Ch. III, p. 117). If G is a finite group, the
matrix A is regular.
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7.3. Two relation matrices A, B belong to the same group if and only if they

are equivalent in /(. (Z), i.e. B=PAQ where P,Q are invertible matrices in
M. (Z).

REMARK. Among all equivalent matrices A there is a unique diagonal matrix
D =diag(d,.d.,....d,) where d ld,ﬂ (d: > 0). The elementary divisors d; are
determined by the condition that D; = d\d," - - d; is the greatest common divisor
of all j X j subdeterminants of the matrix A.

Furthermore, G is then isomorphic to a direct sum of cyclic groups of orders
d.d,_,....d, (some d; may be 1).

If G is a finite p-group, then each d; is a p-th power, ie. d =p*,

SELHE =g

7.4. Let G =S,(H) be a symplectic p-module, and K be a Lagrangian
submodule with invK =(fi.fo,....f), fizfoz---=f=1 and let invH =
(ei,es....e,) with e,=---Z2¢ = 1.

For our matrix calculation we make the following notational changes:

NotaTions. Since r=rk H =rk K =s by Corollary 3.1, we add to H in-
variants e,., = --- = ¢, =0, thus both inv H = (e, e,...,¢,) and inv K will be
vectors of the same length.

We also denote by p” the diagonal matrix diag(p“,p®,...,p") and similarly
p"=(p"...p")

These conventions yield for G = Si(H) two different types of sets of
generators with two possibly different relation matrices in #.,(Z):

The form G = S,(H)=H @ H yields 2s generators {h, h;} and a relation
diagonal matrix

Pt 0
N :< 0 PE>'

On the other hand, Theorem 7.1 gives 2s generators {k:} and the relation

_(PF 0
u=(5 p)

matrix

These two sets of generators and their matrices will be used in proving:

7.5. TueoreM. If K with invK =(f,,....f.) is Lagrangian in S(H) and
inv(H)=(e,,..., &), then:

(@ e+e+ - te.=fi+fiat - +f,for1=Sp=s

(b) e.+e i+ te tie Sfi+ft-+fuitifs, for ISp=s
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(C) f\+'.'+f2()‘*|§e’)+l+ep¢2+...+e\'pw f()l’ 2p+1§s.
(d) ft+-+f, e t-te ,+ile, te ) for 2p=s.

From the equality | H|=|K|[. we shall obtain respective inequalities.

COROLLARY. (') fi+ -+ . Se +- +e,.

®) i+t tifuSet - te  tie

) fit-—+f,=(e;t - Te)r(e.,te ,+-+e)

d) i+ +fo (et te, D+3ie, +e o)t (e, + - te)

Note that the order of G yields equality for w =1 in (7.5a).

Proor. The matrices of relation 4, N of 7.4 are of the same order 2s, hence,
by Remark 7.3, they have the same elementary divisors d,(.#), d;(X). Also, the
greatest common divisors D, (M), D,(N) of all i X j subdeterminants of # and &
respectively are the same (when taken positive). Moreover, since G is a p-group,
the elementary divisors are p-th powers, and we can restrict all our calculation to
the p-th exponents of various subdeterminants we shall be considering.

Denote D;(N)=p>""; D;(M)=p>".

The matrix A is diagonal and therefore its j X j subdeterminants are the
product of j powers p“.p“.- - p*,. Hence the g.c.d. of all these subdeterminants
is the minimum product: p* - p% - p“-'- ---, and thus one readily observes that:

(7.5.1) For j=2v, 6:,(N)=2(e, + - +e,..)=22Z__,ae v=12,..s
For ] =2v- 17 83"*1(%): z(es‘ +oe 4 e.\-—u+2)+ [y
:2(es +"'+e.\-—u+|)—es—u+l-

We have 8, (N)= 8:.(N)— €-rs1 = Sse-ty(N) + &,_,.1. We point out that
8,(N)=¢e, and the sum in the brackets is taken to be empty, and we set
So(N) = 0.

We can take the same subdeterminants in the matrix # which will give us
determinants in which the diagonals will be p”, p" p"~ p’, ... and possibly
there are non-zero elements below the diagonal. These may not give the g.c.d.,
but only an exponent = §;(#)= §;(XN).

Consequently for j=2v we obtain 2(f + -+ f_..0Z2e, +-- + e,4,-1)
which yields (a), and a similar computation for j =2v —1 proves (b).

Next we consider subdeterminants of order j =s+ v, v =5 of # and N. The
formulas (7.5.1) for §;(N) remain the same. A j X j subdeterminant / must
contain at least v rows {i,} out of the first s rows, i.e. of the submatrix (p© 0).
Similarly, also v columns {j,} out of the submatrix (). Since the elements of p"
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are in the diagonal, in order to obtain a non-zero subdeterminant of #, we must
take in this subdeterminant the same {i,} columns, and the same {j,} rows of the
matrix M. Let 1 =i, <ih<---<i =5 and similarly 1= <j<---<j, =5
Thus the subdeterminant considered has the form:

-
0 ...pf.-,.... 0 0 0
0 p' 0 0 0
D<s,;)=
%
0 ---ph- 0

As we are interested only in the power of p dividing D,;;,, we know also that
for some Dy the highest power of p dividing the g.c.d. D,., () will appear for
some Dy . Taking this particular determinant and developing it with respect to
the first v rows and last v columns we will get by setting Dy, = p**'c, ¢ # O(p):

dup=(fit - +fi)t(fit - +f)+ 8

where p® is the highest power of p dividing a subdeterminant or order

(s + v)—2v =5 — v. By taking a lower bound for 8’ and for the sums in the
bracket, we get

Sees (M)Z2fe+ i+ Hfi )+ 8 (M)
since f, 2 fi_,« and 8' = §,-,(M).
Combining this inequality with the fact that & (#)= §;(N):
2fi it H o) 2 8 (M) — 8- (N),
we change notations and put u = s — v; then
fotfot ot funn S8 (M) = 8. (M)
The values of §;(X') are given in (7.5.1), from which we deduce:

For u =2p, 25 —u =2(s — p) and note that 2p < s:

fot oot fopn1 S3(Bse (V) = 82, (N)) = f é.

i=p+1

For p =2p—1,2s —pu =2(s —p)+1 and note that 2p —1=:
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fot+ frp £ 1(Brs-prt(N) = 8201 (N))
= %(52(_\.,,‘,,(‘/&/) - 530 (‘N)) + %(e" + e“pﬂ)

s—p
= 2 €; +-;(ep + es'p+l)

i=p+1

which completes the proof of the theorem.

The corollary follows from the fact that n = f,+-+- +f, = e, + - + ¢, where
p" =|K|=|H]|, and noting that left sides of (a)-(d) are n minus the sides of
(@)-(d).

8. An application

A problem suggested in [4] led to the question of determining the common
Lagrangian of various symplectic modules. We shall be able to answer a question
of this type later. First we deal with the converse: constructing various
symplectic modules in which H is Lagrangian. One module of this type is
S\(H)= H @ H of Theorem 4.1. Another type is the following:

Letinv H = (e, ea,...,¢), and assume r = 2p is even (if not, set ¢,., = 0), and
consider the abelian group H, with invHy={(e,+ e:,e3+ e,...,6,.,+e). We
prove.

8.1. THEOREM. S,(H,) is a symplectic module of

rkS,(H(,)=2[rkH+l],

2

in which the original group H is Lagrangian.

ProOF. Clearly tk S\(Ho) = 2tk Ho = 2[(rk H + 1)/2). If H,=
()P D (u,) then Si(Ho)=(u)D- D w)DW@)D- - D (&), and

|Si(Ho)| = (p™) = |HF.

Hence, in view of 3.1, Corollary (b), it suffices to identify H with an isotropic
subgroup of S,(H,).
Indeed, consider the group

Hi=(p u)® (p a) D (p u) B (p i) B B (pu)D (™).

Its invariants are readily seen to be (e, e,...,e-1,¢), and, therefore, it is
isomorphic with H. Next H, is isotropic and clearly we have only to check

(P, p-tik) = — p -l (u) = — 1= 0 mod(Z)
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—le, e,

since ;{(u;)=p - The other relations are trivial.

NoTaTION. Denote by S:(H) the symplectic module Si(H.,).

REMARK 1. The examples S,(H) and S:(H) show that in Corollary 3.1a, the
even rank of the symplectic modules G in which H is Lagrangian can be either
equal to 2rk H or as low as 2[(rk H + 1)/2].

Moreover, we can get various ranks in between by extending the construction
of the last theorem.

REMARK 2. Let H=H'@@H" and construct the symplectic module G'=
S\(H) S:(H"). Tt is not difficult to show as before that there is a Lagrangian in
G' isomorphic with H.

Note also that in the construction of H, in our theorem, we could have used
any pairing of the invariants of H to obtain the corresponding H, and a
symplectic module in which H is Lagrangian.

8.2. In our next result, which is an application of the last theorem, we make
the convention s =r =2k, and invK =(f,....f.), invH =(e\.....e,). Since
r = k, it means that if rk K =1 (mod2) we add f, =0, and also all ¢, =0 for r <j
where r =rk H.

In this context we prove

TueOREM. The group K is Lagrangian in both S\(H) and S-(H) if and only if
tkK=rkH, or tk K=rkH+1 and then necessarily tk H is odd, and the
following holds:

€ = fZiAI i%(f:i—l +f2i) = %(elifl + ez.‘)i 2% = €3

Proor. Since K is Lagrangian in S,(H), we have by (a') of the last corollary
that

fit - tfiSet o te.
K is assumed to be Lagrangian in S.(H)= S\(H,) with
inv Hy= (e, + ez, e:t €4,..., €201+ €2,0,...,0) where s = 2k.
Hence, it follows by (c') of the last corollary that for p =k,
fit -t fpZ(eite)t - +(eyp1te,)t0

since s —p +1> k. Applying the two inequalities for p =1,...,k shows that
fZi—l + fz-' = €3i-1 T €2
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In view of this equality it follows from (a’) by Corollary 7.5 choosing
w =2i—1, that f,, ., = e . Finally, from (b") Corollary 7.5 put p =2i; we get
~3fn = —ie.. since

Yol—

fri

1| —
[\)]._.

Shatn=3r-

and similarly for the e’s. Consequently f = e..

The relation between the ranks is proved as follows: if rk K # rk H, since K is
Lagrangian in S,(H), then rk K 2 rk H by Corollary 3.1. This, in view of the
inequality of the theorem, means that the last v for which f, > 0 must be even,
and then we may have e, = 0, which proves that then rk K = rk H + 1 = ((mod
2).

To prove the converse it suffices to consider the case of two invariants,
inv H = (e..e,), invK =(f..f.) (the case s =2) satisfying the theorem, i.e.,
ete.=fitfezfizf.=e.

We observe that in A, (Z) the diagonal matrix N = diag(p®,p®,p=.p~) is
equivalent to the matrix

p» 0 0 0

0 p= 0 0
M= 0 pe p' 0

-p= 0 0 ph

One proves easily that # can be transformed to diag(p®,p®, p"* %, p/*h7<)
by elementary operations on rows and columns noting that e; = f,. The matrix
obtained is equivalent to W, since f, + f. — e, = e,. In view of 7.3 and Theorem
7.1, it follows that K, whose invariants are (fi,f.), is isomorphic with a
Lagrangian of Si(H).

One can also obtain this by exhibiting this group K, i.e. the subgroup of S,(H)
generated by the elements:

k|=pe’7{‘{l‘|+hz, ;(_z:pe‘_fzhl'*’hAz

and indeed, p'k, =0, pk,= p"h, =0 since f>Z e,; and
(ki k>) = pzﬁ’fﬁf:(;;h h)+ (hs. ;{2) = pe.-frf: ~-p =0,

because fi + f,= e, + e-.
The fact that K is also Lagrangian in S,(H) follows since both H, and K, are

cyclic of order po*==p"*%: so S,(H)= S\(K,), and the latter contains K as
Lagrangian subgroup.
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REMARK. The converse of our theorem follows also from the classification of
Lagrangians of rk4 symplectic modules, given in the last proposition of 5.3.

An immediate consequence is:

8.3. CoroLLARY. If H is a p-group whose invariants appear in pairs, then H
is the only common Lagrangian of S.(H) and S:(H).

9. p-regular groups

9.1. The problem of a lower bound for the order of a p-group G satisfying
(6.1n) seems to be difficult. In {4] p. 139 we have given the bound p*"~*, which is
used to show that the Galois field splitting the universal division algebra of
degree p" must be of dimension = p*"~*. But this seems to be a too small bound.
If G is abelian, a far more higher bound is given in Section 6.

In the following we show that this bound is also valid for some general
p-groups: the regular p-groups.

A p-group G is a regular p-group if for every integer m and every a,b € G:

(abY™ =a""b?"S"--- S

for appropriate elements S; from the commutator subgroup ([2] p. 183). A large
set of such groups are the p-groups of class < p, which include the abelian
groups which are trivially regular. For these groups which satisfy (6.1n) we shall
prove also the theorem of 6.1.

9.2. NoOTATION. Let |G|=p* we denote g =|G |,

Given an abelian group K of order p" and invK = (fi,....f.), fi Z fi1, we
consider the partition n = fi+f,+---+f as a Young diagram D, having f;
squares in the j-th row; and the corresponding dual partition of n =
ft+---+f% where f} is the length of the i-th column of the corresponding
Young diagram Dy; in other words f% is the number of f; = i.

Let G be a finite p-group containing a set of groups {K,} and let

G=G>G,> - >G,>G,y = (e)

be a composition series such that G;/G;., is an elementary p-abelian group.
Then:

PROPOSITION. | G |, Z Z; Max, rk((Ky N G)/I(K, N Gity)).
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Proor. By induction on s. The quotient group G./G: is a vector space over a
finite field of p elements and G,/G- D K,\G./G-= K, /(K, N G:) for all A ; hence,

|G\/G.

P = rk(G|/Gz) = M/\ax rk(K/\ /(KA N Gg))

On the other hand |G |,,=|G//G:|p | G:le» and G. 2 K, N G, for all A. The
rest follows now easily.

9.3. One of the main properties of regular p-groups is that
G.={g€eG;g" =e}
form a normal subgroup of G ([2]). This is used in proving:

THEOREM. Let G be a regular p-group containing a set of abelian groups {K,}
SuCh that inV K)‘ = (f,”,. ..,f)‘;), f)“ = AP+l = 0, then

|G|z Z MAax(fA,-) = Z Max (f3i)-

Indeed, consider the sequence G = G,>G, &> ->G\>G,= (e) with G
defined above. Note that in this case

K.NG =(K\) ={g €K, g" =e}.
Also tk((K,);/(K, )i-1) = number of f,, which are =, i.e.,
tk((KL ) /Ky )0 = f35,
since if K, = (ki1)+ -+ (ki) then

(K = (0" k) B D" ki) D (ki) D,

where f,, >j 2 fu.: and so

(KK = (ph ) B D (ph k) B - D (k)

where f., > j—12Z f,... It follows, therefore, by the preceding proposition that
|Gy = 2 Max, 1.

[t remains to prove the equality of 2, Max, f%; =  Max, f.. To this end, set
F. =Max, f., thenclearly F,=2 F,Z--- =2 F,. Let m = F, + - -- + F.. This partition
of m yields a Young diagram D¢ which is clearly characterized as the minimal
Young diagram containing all diagrams D, corresponding to the partition
n=fi+:-+f, But from this point of view, considering the Dr to be
determined by their columns f}; Dr will have columns of order F* = Max, f%,
and then m = Ff+--- + F* proves our assertion.
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9.4. We can now extend Theorem 6.1 to regular p-groups.

THEOREM. If G is a regular p-group containing a Lagrangian of every
symplectic module of order p", then

n n
G lmz D, [ﬁ] = (logn +c)+ o(Vn).

Indeed, consider the set of symplectic modules {G,} defined in the beginning
of 6.1. By assumption, the group G contains a Lagrangian K, of G, Let
inv K, = (fys fuss-- -+ fa- ), then as in Lemma 6.1 we obtain f, ={i[n/q]}. It
follows now from the previous theorem (in 9.3) that

o= e =313 4]

q

The rest follows now from Theorem 6.2.
In the application of [4] theorem 7.4, it was noted that the Galois group of a

splitting field of the generic division algebra of degree p" contains a Lagrangian

of every simplectic module of order p”. Since every p-group of order = p” is

p-regular, one readily verifies that:

CoRrOLLARY. Galois splitting fields of the universal division algebra UD(p", k)

n(logn+c)2+o(\ n)

with n < p have dimension over the center Zp

REMARK. One can replace the undetermined O(\/;_1) in the theorems of 6.2
and 9.4 and their corollaries by — 2(\/7;+ 1). This can be obtained by a closer
analysis of the Dirichlet approximation of 2[n/v], e.g. in [3] theorem 320, used
in these theorems.
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