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ABSTRACT 

A symplectic module is a finite group with a regular ant isvmmetric  form. The 
paper determines sufficient conditions for the invariants of the maximal 
isotropic subgroups (Lagrangians), and asymptotic values for a lower bound of a 
group which contains Lagrangians of all symplectic modules of a fixed order p". 
These results have application to the splitting fields of universal division 
algebras. 

1. Introduction 

In a recent paper of the authors on finite-dimensional division algebras and 

their splitting groups [4], we reduced that subject to problems on abelian groups 

with skew-symmetric forms (symplectic modules) and their maximal isotropic 
subgroups, see e.g. [4] theorems 4.2 and 4.4, and asymptotic values of some of 

the results of sections 7 and 8 of the present paper were already applied in 

sections 6 and 7 of [4]. 
The symplectic modules appeared first in connection with classification 

problems of differential topology, see e.g. [1, §19] and [5, §4], and their structure 

was easily determined (also in §4). 
The main object of the present paper is the study of the maximal isotropic 

subgroups of a symplectic module G, known as Lagrangian subgroups of G. The 

problem of determining all Lagrangians seems to be very difficult, and in fact we 

give a complete answer only in the homogeneous case (Corollary 5.5), but we do 

get some bounds for the elementary divisors of Lagrangians (Theorems 5.5 and 

7.5). These are applied to two problems: (1) To obtain a lower bound for an 

abelian group G, which contains at least one Lagrangian of every symplectic 

module of order p"; it is shown (Theorem 6.1) that I G . ] =  >p~"m~'~ . . . . .  o~v.). 
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(2) To get conditions for a group to be contained in two different symplectic 

modules (Theorem 8.2). Both resulls were used in [4] Corollaries 6.7 and 6.9 and 

Theorem 7.4. 

2. Basic results 

To make this paper independent we repeat some of the required definitions 

and review some of the basic properties needed. We shall restrict ourselves only 

to finite groups. 

2.1. A skew symmetric form on a finite abelian group G is a bilinear skew 

form: ( ) : G  × G ~ Q / Z  into the rationals rood 1 (the roots of unity). 

We make correspond to this form a homomorphism ,~:G---)(~, where 

(~ = Horn(G, Q/Z), the dual group of G, given by A (g)(s ¢) = (g, ~:)for g E G and 

every ~ E G. The form is regular if A is an isomorphism, but since we restrict 

ourselves to finite groups, and to Q/Z, regularity is equivalent to injectivity of A, 

i.e. ( g , G ) = 0  if and only if g =0 .  

2.2. Let P C_ G be a subgroup of G, we denote by ( , )p the restriction of 

the skew form to P, and by Ap, the map Ap • G--~/5 obtained by restriction of A to 

P. 

The group G is called a symplectic (Z-) module if the skew form defined on G 

is regular. A subgroup P is a regular subgroup if the restricted form ( , )e is 

regular on P. 

The orthogonal subgroup of P is defined by P ± =  {g E G ; ( g , P ) =  0}, i.e., 
p l  = Ker Ae. 

For subgroups P of G we show: 

P~OPOSmON. If G is a symplectic module and P C_ G then 

(x) IPlle l=lol and P l l=  P; 
(2) if P is regular then P* is also regular, G = P 0 P~ and 

(p~+q,,p2+q2)=(p,,p2)+(q~,q2) forp~EP, q, G W .  

PROOV. Let/5 be the dual of P, then the map Ap • G--*/5 is surjective. Indeed, 

any character on P can be extended to a character on G, and since G is 

symplectic, this can be realized by an element g E G, i.e. Ae(g)(p) = (g,p) for 

every p E P, which means that Ap is surjective. Clearly, by definition, KerAp = 

P~; hence [G[ = [Pill/51 = I P l [ I  P [. Finally, p l i  _D P, and from the first part we 

conclude that [Pl~[ = I a l l  P~ I-' = I P l, hence P±~ = P. 
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The second part is well known (e.g., [5] lemma 1), and we repeat the proof: 

Let g E G, Ap(g)E/5 and since P is regular there exists p E P  such that 

Ap(g)= Ap(p), i.e. A e ( g - p ) = O ,  which means that g - p  E p l  and that G = 

P + P~. Also if p E P I"1 p l ,  then Ae(p)= 0 and since P is regular, p = 0, i.e. 

~ = p ® e  ~ 

Now p l  is regular: for any X : Pl---> Q/Z can be extended to a character of G 

by setting x (P)  = 0. Since G is regular, there is a g ~ G such that ;~(h) = (g,h) 

for h E G. But x(P) = 0 implies that g E P~, which means that P~ is regular. 

We refer to a decomposition G = P, E)" • • ~) P, as an orthogonal decomposi- 

tion if P~ C_ P]- for all j #  i. 

2.3. A subgroup KC_ G is isotropic if K I D K ,  i.e. ( K , K ) = 0 ,  and it is 

Lagrangian if it is maximal isotropic, equivalently K l = K, since otherwise the 

subgroup generated by K and an element of K l is also isotropic. 

PROPOSITION. The Sylow subgroups G tp~ of G are regular subgroups, and 
G = (~ G tp~ is an orthogonal decomposition. Moreover, K is Lagrangian in G if 

and only K = (~ K tp~ and each K cp) = K tq G tp~ is Lagrangian in G ~p~ for all p. 

Indeed, if g E G  ~p~ and h E G  is of order m, with ( m , p ) = l ,  then let 

1 = rp ~ + sm, (g,h) = (rp ~ + sm)(g,h)= r(p~g,h)+ s(g, mh)= 0. Hence G tp~ 

contains all elements of order relative prime to p, which in the abelian case form 

a subgroup G 'p', and IG'P"I=IGI.IG'"'I. One then readily shows that G = 

Gt"~(~ G ~p)', and by the earlier observation the sum is orthogonal. The rest of the 

proof follows now by standard computations. 

3. Lagrangian submodules 

We begin with a few elementary properties of Lagrangian submodules of a 

symplectic module G. 

3.1. PROPOSITION. A submodule H C G is Lagrangian if and only if the 

following sequence is exact: 

(3.1.1) 0 ~ H i, , ,  , G  ~/3 ~0 

where in is the injection, and An the induced map by the skew form of G. 

PROOF. If H is isotropic, then (h ,H)= Ah(H)= 0 for h ~ H, and hence 

Ker Au _D H. The map An is also onto, since the sequence 0--> H-- ,  G yields the 



VoI. 54, 1986 SYMPLECTIC MODULES 269 

surjection 0 ~ / g / ~  0, and AH is the product G ~ 0 ~/_7/, and therefore it is also 

a projection. If g E Ker A, then (g, H )  = 0 and the maximality of H implies that 

g E H which proves the exactness. The rest of the proof is clear. 

Immediate corollaries of the exactness of (3.1) are: 

COROLLARY. (a) If H is Lagrangian in G, then I G I = I HI 2 and 

rk H _-< rk G _<- 2rk H. 

(b) If H is isotropic and I G I = I H 12, then n is Lagrangian. 

The result (a) is immediate, and for (b) we note that since H is isotropic the 

sequence of (3.1.1) is a zero sequence, and I GI = I n  12 = I H I .  1/41 yield that it is 
exact. 

Later we shall see in §8 that the inequality of the corollary cannot be 

improved. 

3.2. The following will be needed later: 

LEMMA. (a) Let H be Lagrangian in G and M ~ H, then M ~_ H ~_ M l and 

the form of G induces a regular skew form on M / M  ~ in which H / M  l is 
Lagrangian. 

(b) If G = P~ 0 P2 is an orthogonal decomposition into regular submodules of G, 
and H is Lagrangian in G, H O P~ is Lagrangian in P~ then H n P2 is Lagrangian 
in P2. 

PROOF. Since M C_ H, H = Hl_~ M ±, and in /~ = M / M  l define the form 

(/~,t~) = (p,q) for all p,q E M and where/~,~ denote their class in/~.  The proof 

of (a) is then straightforward. 
To prove (b), we note that if h E H and h = pl +p2, pi E P~. Then 

0 = (h,H n P~) = (p~,H n P,)+ (p2,H n Pj)= (p~,H n P~) 

since p2 E P~, but H n Pj is Lagrangian in P~, hence p~ E H n P~. Consequently 

p 2 = h - p j E H O P 2 ,  and thus H=(HNP~)~]~(HNP2).  Clearly HOP2 is 

isotropic and its maximality follows by computing the order of I H n P21 and 

applying the preceding corollary. 

3.3. An attempt at determining the Lagrangian of a symplectic module G 

will be made in the last section, but at this stage we can give some sufficient 

conditions. 
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PROPOSITION. If H and K are two Lagrangians of G, then H/(H n K)= 
K/ (H n K); namely, both are extensions of the same group by H n K. 

PROOF. 

(3.3.1) 

Since H,K are Lagrangians in G, we have two exact sequences. 

i K A K " A H  

0 ~K ~G ~/( >0, 0 , H  " ' ~ G  ~/2/ ,0. 

Consider the map q~ = A,iK, then clearly Ker q; = K n H. Now 

q~(K) = {/~ E / : / ;  3k E K, (k, rl) =/~(W) for every ",7 E H}. 

Since K is isotropic and K _D K n H, we have (K, K n H) = 0 and, therefore, 

g,(K) C_ AH(K N H) ~ = {/~ E/2/;/~(K N H) = 0} G/2/- 

Consider A, (K n H) ~ (c_/2/), and we show that it is isomorphic with (H /H n 

K). Indeed, these are the characters of/2i which vanish on H n K, and as such 

they can be identified naturally with a subgroup of (H/H N K). Moreover, any 

element of (H/H n K) can be extended to H and vanishes on H N K and 

therefore will belong to AH(K n H)  I. Hence, 

[,~,~(K n H y [ =  I HItK n H)I = IHItK n H)I--> I~(K)I- 

B u t  I HI(K n H) I = I KI(K n H)I = I K/Ker  ~] = I~(K)]. Hence we have the 

equality, from which it follows that ~(K)  ~ H/(H n K) ~- HI(H n K) and thus 

induces the isomorphism KI(H n K) ~ HI(H n K). 
Note that this isomorphism is not canonical since it is a composition in which 

one of the maps is between an abelian group and its dual, which is not canonical. 

4. C o n s t r u c t i o n s  

Given a finite abelian group H, it is easy to construct a symplectic module, 

denoted by S~(H) in which H is Lagrangian. 

Let i2i be the dual group of H and consider S~(H)= H@/2L In S,(H) we 

define a bilinear form: 

(h, + ~o,, h2 + ~o2) = ~,(h2) - q~2(h,); h, ~ H, q~, E/2/. 

4.1. THEOREM. S~(H) is a symplectic module and H is Lagrangian in S~(H); 

conversely if G is a symplectic module then G-~ S,(H) for some Lagrangian 

submodule H, and the isomorphism is an isometry. 

The proof of the first part is immediate. The second part is well known 

([1], [5]), and for completeness we indicate the proof: 
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Let (3 be of exponent m, and let g ~ G  be an element of order m, then 

0 = (g)@ G,. We then have a ~ 0 which satisfies ~(g) = l/m, ~(Gi) = 0; since 

G is regular, let g' ~ G such that (g'. "0) = ~(r/) for all "q E G. One easily shows 

that (g )O(g ' )  = G,, is a regular subgroup of (3, with (g) a Lagrangian subgroup. 

Hence by Proposition 2.2, G = G,,@ G, ~, and the rest of the proof follows easily 

by induction by showing G,', = S,(H,,) and G = S,(H,,+(g)). 

An immediate consequence is: 

COROLLARY. A .finite abelian group G can be defined to be a symplectic module 

if and only if rk G is even, and its elementary divisors appear in pairs. Moreover, if 

G, G' are two symplectic modules which are isomorphic as groups, then there is an 

isometric isomorphism between them. 

The first part of the theorem follows from the theorem, since G ~ S~(H) = 

H@I2- I~ -H@H and so r k G  = 2 r k H .  Conversely, if G has even rank, with 

elementary divisors which appear in pairs, then G ~ H ~:3 H for a subgroup H 

whose elementary divisors take one of each of G's,  and finally G ~ H ~) f2i = 

S~(H) and the isomorphism can be used to turn G into a symplectic module. 

The second part follows from the fact that if G ~ G '  and G ~-S,(H), 

G ' ~  S~(H'), where the last two are isometric maps. Then clearly H ~ H' and 

this isomorphism can be extended to an isometry between S,(H) and S,(H')  as 

required. 

4.2. A description of all Lagrangians of S,(H) = G, which is complementary 

to Proposition 3.3, is the following: 

Let O _c H be a given subgroup of /4, and let ~ O × O ~ Q / Z  a symmetric 

bilinear form on O (not necessarily regular), and let P = K e r 1 ' =  

{q E O,~(O,q)=O} .  

Consider the subset K ,  C S,(H). consisting of all g = q + q~, q E O, ~# E I2I 

such that ~(s ~) = 1'(q, s ¢) for all s ~ ~ O. Since ~(q, P) = 0 it follows that necessar- 

ily ~0 E p l  = {~ E/2/; ~,(p) = 0}. One readily observes that K ,  is a subgroup of 

S,(H), and we prove" 

THEOREM. (a) K .  is Lagrangian in S~(H) and P = K ,  D I4. 

Conversely, 

(b) If K is Lagrangian in S,(H), then there exists a subgroup O c_ K and a 

symmetric form ~ on Q, such that K = K .  and K D H = Ker ~ .  

PROOF. Let q~ + ~o, E K , ,  i = 1,2, since • is symmetric: 

~,(q2) = ~(q,,q,_) = ~(q_~, q,) = ~,_,(q,). 
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Hence, (qj + ,~,,q_, + ~:) = ~.(q~)-  ~o.,(q~) = 0 which proves that K ,  is isotropic. 

To prove it is maximal, it suffices to show, in view of (b), Corollary 3.1, that 

I g .  I = ] HI. To this end, we consider the map e : g . ~  /_7/ given by e (g + ~o) = ,p. 

First, we observe that Ker e = P. Indeed, let q E Ker e, then q + 0 E K, ,  which 

yields 0 = (q, O), i.e. q E Ker e = P. The same argument in the opposite direc- 

tion leads to Ker e _D P, and thus Ker e = P, and clearly P = K .  n H. Next, 

I m e  = PI:  the definition of K .  implies immediately that Im e  _CP 1. Let 

,,o E P~ C_/-4, then ~, I O vanishes on P so ~o [Q induces a well-defined character 

on O/P. Since • induces a regular symmetric form on O/P, it follows that there 

exists ~ E O/P such that ~(~ ,~)  = ~(~) for all s¢E Q/P. By definition ~(~ ,~)  = 

• (q,~) and qS(~) = ~,(~), hence q + ~o E K. .  This proves that e induces the exact 

sequence O--*P--~K.--~PI-oO, and hence IKl=JPlIPl] ,  Noting that P I ~  

(H/P), we finally obtain that t KI = I Pt = I n / P  I = I HI as required. 

Conversely, let K be Lagrangian in S,(H), then every element of K can be 

written k = q + ~o, q E H, ~ E/2/. Let O = e~(K) where e~ is the projection: 

S~(H)--~H, on the first component of H O/2/, i.e. e~(q + q~) = q. Let q, + ~o, E K, 
i = 1,2, then since K is isotropic, we have 

(q, + ~,. q_. + ~o,) = ~p,(q.)- ~p2(q,)= 0. 

We define ~(q~,q2) = ,~,(q2) = ~2(q,) and prove that • is a well-defined 

symmetric form on O (independent of qh or ~o2). For, if q, + ~o~ and q, + ~ol E K, 
then k = ~ - ~'~ (E K, hence for every q E O, we have q + k E K and by the 

isotropy of K, we have 

O= (q + k.~, - ~ ) =  - ~ ( q ) +  ~',(q), 

which proves that qr(q.q2) is independent of ~ .  Clearly the definition also 

implies that • is symmetric. 

To prove that K A H = K e r ~ ,  let q E K e r q r  then q + q ~ E K  for some 

~o E/2/, for every s ~ E 0 lhere exists s ~ + p E K, and hence ~(q ,~)  = ~o(~:) = 0, i.e. 

~ p E O  I. But then in S,(H), ( 0 + ¢ ; , ~ : + p ) = ¢ , ( ~ : ) = 0 ,  so ~ E K I = K .  Conse- 

quently q = q + ~, - ~ E K, and this proves that Ker q' C_ K n H. Conversely, if 

q E K A H  then for any s C + p E K ,  ( q , £ + p ) = 0  since K is isotropic, but 

(q ,~:+p)  = -p (q )=q ' (q ,£ )=O,  i.e. q E Kerq ' .  

Finally, K = K ,  because for every q + ¢ E K  and s ¢ + p E K ,  0 =  

(q + ~o,s¢ + p )  we have p ( q ) =  ¢(~¢) = q'(q,~:) as required. 

REMARK. The previous method shows how to construct Lagrangians K C_ 

SI(H), and one such that K n H is a prescribed subgroup P C H. To this end 
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one has to find a subgroup Q c H for which one can find a symmetric regular 

form on Q/P. If this is possible, then the form induces a symmetrical form on O 

and apply the previous result. 

Unfortunately, the last result gives very little information on the structure of 

the various Lagrangians of S, (H) ,  and in particular their elementary divisors 

which are the major tool in the applications in [4]. We turn to two different 

methods to obtain such information: 

5. Almost homogeneous symplectic modules 

In view of Proposition 2.2 we can focus our attention on abelian p-groups. We 

use the following notation: Let K = ( k , ) ~ ) ' ' '  O (k2) be the decomposition of K 

into cyclic p-groups in which (k~) is cyclic of order pr,; we arrange them in the 

order f~ >= f2 >-- "'" >--f,; the integers pr, are the elementary divisors of K. We 

shall deal with the ordered set (f~,f2 . . . . .  f ,) and refer to them as the invariants of 

K and write inv(K) = (f~,f2 . . . . .  fi). Often we allow one to increase the number of 

invariants by adding zeros, which is equivalent to adding generators kj = 1, 

which generates the trivial group. 

5.1. If K = ( k 0 0 "  " ~ ( k r )  we shall denote by {/~j} the dual generators o f / ( ,  

where/~ is given by l~,(kj) = &jp%. If G is a p-symplectic module, then by 4.1 its 

invariants come in pairs, and we shall write its invariant set as i n v G  = 

2(ej . . . .  ,er). Note that if G = S~(H) then i n v H  = (e,,e2 . . . . .  e,). 

REMARK. We quote a well-known result which will be used in the context: If 

inv G = (ft . . . . .  f,) then the invariants of subgroups and of homomorphic images 

are not greater than the respective invariants of K. 

5.2. Denote G,, = { g E G ; p " g = 0 } .  

PROPOSITION. Let G be a p-symplectic module with invariants inv G = 

2(et,e2 . . . . .  e,), then: 

(a) inv G,. = 2(m,m . . . . .  m, ej+, . . . . .  er) where e~ > m >= ej+~. 

(b) i n v p " G  = 2 ( e , -  m . . . . .  ej - m,0 . . . . .  0). 

(c) I f  G~ D_ p~G then inv (G, . /p~G)= inv G , , - i n v p ~ G  as vectors. 

(d) G ~ = p " G ;  ( p " G )  ± = G,,. 

PROOF. Let {g~ } be a set of independent generators of G, then {p'g~ } is a set 
of such generators of p"G,  and {p'~-"gA} for e~ > m is a set of independent 

generators of G,,. This readily proves (a), (b) and (c). 
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To  prove (d), we consider  the equali ty (ping, G) =  (g, pmG), for g ~ G, hence 

(g, pmG) = 0 if and only if ping = 0. Hence  ( p ' G )  l = G,,. 
Taking the or thogonal  of both sides of the preceding equality,  we get 

(pmG)i~ = G~, hence G~  = p"G by Proposi t ion 2.2(1). 

5.3. Let  G be a symplectic module  with inv G = 2(e~ . . . . .  e,) (rk G = 2r),  and 

let K be a Lagrangian submodule  of G. If rk K = s then by Corol lary  3.1, s -_< 2r, 

so we hencefor th  write inv K = (fhf2 . . . . .  f-~,), f~ => " '"  => f2, and set f~ = 0 for all 

j ~ S .  

LEMMA. e,>=f~; Gt,~_K~_p¢,G;pr2,G~KD_Gr,,.  

PROOF. e~=>f~ since e~ is the exponen t  of G and f~ the exponen t  of a 

subgroup.  

Next ,  pt.K = 0, i.e. K C_ Gr, and passing to the or thogonal  of these groups,  we 

obta in  K = K ~ 3_ Gt ~, D_ pt, G by (5.2). 

The  last relat ion is trivial if f2, = 0, so assume f:, > 0. In this case, K fq Gr, r = 

Kr2, is a hom ogeneous  abelian group of rank 2r and exponen t  pt,,. This is also 

true for Gt~, since e, => f2, by the remark  of 5.1. Since Kt,, C_ Gr,,, we must have 

equali ty,  which yields K _D Gt2,. Passing to the or thogonal  we obtain,  as before ,  
pt~,G ~_ K. 

COROLLARY. f, +f2i >= e, >=f2,-z +f2,, i = 1,2 . . . . .  r. 

Indeed,  from (5.2) we have 

inv pt2,G = ( e , -  f2,,el - f2 . . . . . .  e, - f2,,e, - f2,), 

then by R e m a r k  5.1, the relat ion pt~,G D_ K yields f:~ ~ =< e~ - f2,. Similarly, the 

relat ion K D_ pt, G yields f2~ => e~ - f~. 

The  last result  yields a classification of all Lagrangians of symplectic modules  

of r k 2  and rk4:  

PROPOSITION. (1) If G is symplectic and inv G = 2(e,) then K is Lagrangian in 
G if and only if i n v K  = (ft,f2) with ft +f2 = e~. 

(2) Let inv G = 2(e~, e2) and inv K = (f,,f:,fi,f4) then K is Lagrangian in G if 
and only if 

f l + f 2 + f 3 + f 4 = e , + e 2 ,  fl+f2>=e~>=f,+f4>=ez. 

PROOF. For  the first part ,  it follows immediate ly  from the lemma and its 

corol lary that necessarily f~ +f2 = e~. The  existence of Lagrangians with in- 

variant  (f~,f2) was shown in the proof  of 5.2. 
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The "only if" part of (2) follows from the lemma and its corollary. The group 

K C S,(H) = G which is Lagrangian with the required invariant is the following: 

Let H --(h~)@(h,),  then K is generated by: 

k, = p', r,h, - pr, h2. k~ = p~,-~l~, + pr, l~z, 

k~ = p~:-r~h~_, k~ = p~:-r4~> 

(Note that e2 _-> f~ and even e_~ _-> f, + f~ follows from the equality and inequality 

hypothesis of (2) of the proposition.) 

5.4. The following is fundamental for an induction process to be used in 

proving the main result of this section: 

LEMMA. Let h ~ K N pe,-r,G be of maximal exponent pr, then there exists fj 

j ¢  1, such thai et = f, + fj; and there exists an orthogonal decomposition G = 
G,@ G2 with the following properties: G~ are regular submodules, inv G, = 2(e0, 

invG~=2(e2 .. . . .  e,); K~ = K A G~ is Lagrangian in G~ and invK,=( f , , f j ) ,  

inv K, = 0g,,f_, . . . . .  ~ . . . . .  /2,) (where f means f is omitted). 

PROOF. Let h = pe,-r,g and as h is of order pr, g must be of order el. G is 

symplectic so there is g ' E  G such that (g ,g ' )=  p-', ,  hence ( g ) @ ( g ' ) =  G, is 

readily shown to be a direct sum and a regular submodule. It follows now by 

Proposition 2.2 that G =G~(~G2, with G~ regular submodules. Let h ' =  

pr, g ' E  pr, G' which is also an element of K by the lemma of 5.3. Moreover, h '  

must be of order p,,-r, and thus (h )@(h ' )  C_ K f"l G, is an isotropic submodule of 
order pr,+~,-rO= pe,. Consequently K N G~ = (h)(~(h ' )  and it is Lagrangian in 

G, by Corollary 3.1. Apply Lemma 3.2 and we have K = (K f3 G , ) O ( K  0 G2) 
and K f"l G2 is Lagrangian in G_.. The invariants of K are uniquely determined 

and are equal to inv(K rl G , ) u  inv(K f3 G2), and since inv(K f'l G,) = ( f , , e ~ - f 0  
there exists f /such that e, - f~ = f~. The rest of the lemma follows now easily. 

5.5. A symplectic module G will be said to be almost homogeneous if 

invG =2(e , ,e  . . . . .  e) where e,_->e: i.e. all its invariants are equal with the 
possible exception of the first invariant e,. 

Our main result in this section is: 

THEOREM. I f  G is almost homogeneous and K Lagrangian in G with 

inv K = (f,, f2 .. . . .  f2,) then for k = 1,2 ... . .  r 

e ,>f~+f~, -k+,>e.  

REMARK. Since [K[2=p 2~r'+÷r~,), it follows that Yf~ = e , + ( r - 1 ) e  and, 

therefore, we can have at most e, - e inequalities f~ + f2,-k+~ > e. 
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In the proof  we will show s imul taneously:  

COROLLARY. If  G is almost homogeneous (as in the preceding theorem) and 

e~ = e or ej = e + 1 then there is an orthogonal decomposition G = G~ ~ . • • ~ G, 

with inv G~ = 2(e,), inv G~ = 2(e), and a decomposition K = K, ~ . ' .  ~]~ K,, 

where K~ = K f3 G~ is Lagrangian in G~. Furthermore, inv K~ = (f~i, f,, ), L > tz~ and 

e ,= f~ ,+f , ,  (A, = 1), e = f ~ , + f , , f o r i > l .  

Let  c = e , -  e ;  we prove  both results by induction on the pairs (r, c)  a r ranged  

lexicographical ly.  The  case r = 1 (and necessari ly e~ = e)  is s imple,  since 

rkK_-<2  by Corol la ry  3.1, inv(K)=(f~,f~);  and as I K [ 2 = I G I  it follows that  

f , + f : = e l  ( = e ) .  
Assume  r > 1, then we have f rom Corol la ry  5.3 that  f, + f2, = e, and K C_ p~,G 

by 5.3. Cons ider  first the case that  f~ + f2, = e~, and choose  h ~ K of maximal  

order ;  then we have h ~ p g G = p e ' - 6 G  and we can apply  L e m m a  5.4 to 

conclude that  G = G,  (~ G2, and inv(K f3 G, )  = (f,,fs), f, +fJ  = e,. 

The  main  l e m m a  5.4 yields also that  K = (K N G , ) e ( K  f3 G._), K N G2 is 

Lagrang ian  in G2, and inv G2 = 2(e . . . . .  e). We  apply now the induct ion on G2 

whose rank  is 2 ( r -  1), and p rove  both  the t heo rem and the corollary.  

Next  we assume that  f~ + f2, < e,, and that  e, - e = c > 2: 

We notice that  the relat ion Gr, ~_ K D pI, G yields G,,_, ~ K ~ p e'-' G since 

f, <_-e~- 1. We  apply the relat ion p' , - IG = (G~,_~) l to (a) of L e m m a  3.2 and 

obta in  that  K/pe'-~G is Lagrang ian  in G,,_l/pe'-'G. Now by Propos i t ion  5.2, 

inv(Ge,_,/p ~,-' G )  = 2(e, - 1, e . . . . .  e)  - 2(1,0 . . . .  ) = 2(e~ - 2, e . . . . .  e). 

Induct ion  can be appl ied to these groups,  since e~ - 2 > e and (e~ - 2) - e < e~ - e 

by assumpt ion .  Let  inv(K/p ' , -~G) = (f',,..., f~,); by R e m a r k  5. l ,  )~ > f ' ,  and thus 

fk +/2,-k+, > f~ + f~,-k+, --> e. 

T o  p rove  that  fk + f2,-k+l--<--e~ we note  that  Xfk = E f t + 2  f rom the equal i ty  

IKI = IK /p ' , - 'GI  Ip' ,- 'G[ 

and there fore  E (fk - f ~ , ) =  2. Thus  

fk + f2,-k÷, = (fk - f~) + (f2,-k+~ - f~,-k +,) + f~ + f;,-k+~ < 2 + (e, - 2) = e, 

and the p roof  is comple ted .  

Finally, we have  to consider  the case e , - e  = 0,1: 

Corol la ry  5.3 yields e~ > f~ + fz, > e, hence ei ther  fl + f~, = e~ or f~ + f~, = e. In  

case f~, = e, - f~, we are in the first case of our  proof  which was carr ied out  in the 

beginning.  W e  are thus left with the case f~ + f2, = e, and el = e + 1. 
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Let h E K C pr~.G of the form h = p6.g and h be of order pr'. Consider two 

cases: (1) g ~ p G ,  (2) g~pG. In the first case h Epr:.*'G and f ~ , + l =  

e - f ,  + 1 = e t -  fl  and we are again in the situation h ~ p"-t'G which was dealt 
with in the beginning. Finally, we assume g~ pG; if p'-~g E p'G then pe-,g = 
peg, and so g - pg' E Ge-,. Our group G is almost homogeneous, then necessar- 

ily G,_, C_ pG and therefore g - pg' E pG so g E pG which contradicts our case. 

Hence, pe-,g~ p, G and consequently, Ge = (p~G) l ~ (pe-,g)~, or else G~ = 

p'GD_(p'- 'g)~gpe- 'g,  a contradiction. We have therefore g ' E G ,  with 

(g',p'-~g) ~ 0; and hence g' must be of order p" exactly. Moreover (g', g) = p-'d 
for some d ~ 0 ( m o d  p). 

Consider now the group G, = (g)@ (g') where the sum must be a direct sum; 

it is a regular subgroup with inv G, = 2(e). Furthermore, the chosen element 

h =pt~'g has order e - f 2 , ,  which is equal to f, by assumption and h ' =  

pr, g'Epr, G C_K will generate a Lagrangian (h )e (h ' )  in K N G,, with 

inv(K A G,) = (f,, e - f,) = (f,,f,.,). At last we apply (b) of Lemma 3.2 and obtain 

K = (K t3 G,)@(K tq G2), K N G2 is Lagrangian in G2 whose rank is 2(r - 1) 

and inv(Gz)= 2(e,,e . . . . .  e). The rest will follow now by straightforward induc- 

tion, which proves both the theorem and the corollary. 

6. Bound for a universal group 

We apply the previous result to give a lower bound for the order of an abelian 

group which contains for each symplectic module G of order (pn)2 at least one 

Lagrangian of G. The bound is important for applications in [4] Theorem 7,4. 

6.1. As we are unable to use all symplectic modules of this order, it suffices 

for our purpose to confine ourselves only to almost homogeneous symplectic 

modules of order (pn)2. 

Let 1 < q =< n be an integer, then n = cq + [n/q]q, 0<= cq < q. For each q we 

construct the almost homogeneous symplectic module Gq = GI(Hq), where Hq is 

the abelian group with 

and rk Hq = q, so rk Gq = 2q, inv Gq = 2 inv Hq. 

Let ~3, = ~3,.p be a p-abelian group with the property: 

For every symplectic p-module G of order (pn)2, 

(6.1n) 
there exists a Lagrangian subgroup K of G, such that K C_ ~3,. 
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Note that rk ~d. _-> n. Indeed. there exists a symplectic module G = S,(H) of 

rk 2n, where H is p-elementary of rk n. Since ~,, _D/4. it follows that rk .~. _-> n. 

We denote the first 2n invariants of ~. by (f,.f~_ .. . . .  f._.), f, >-. . .  >-f.. where 

some of the last fj may be zero. 

LEMMA. fq + f~+, >- [n/q], and hence f~ >-~[n/q]. 

Indeed. consider the symplectic module (3, defined above, and K~ its 

Lagrangian which is included in ~d.. Since rkK~-<_rk G~ = 2q let invKq = 

(f', . . . . .  f~q), with possibly f ' ,=>0.  By Theorem 5.5. f ' k+f~  k+,>=[n/q] for 
k = 1 .. . . .  q, and together with Remark 5.1 we obtain for k = q 

f.+fq+ >=f,+f~+,>= n 

and since f~ >= f~+, we obtain f~ >=![n/q]. 
Let {a} denote the first integer >= a for a > 0, then our lemma yields: 

THEOREM. Let [~.l = pN,., then N(n)>= Y.~.  {'[n/q]}. 

Indeed, N ( n ) = Y f q  and fq >=½[n/q]>O for q =< n and thus fq >={'[n/q]} and 

this completes the proof. 

REMARK. A slightly better lower bound can be obtained from the relation 

f, +f2 >= n, and where we do not use f, >= {n/2} and f2 >= {½[n/2]}. With this we 
obtain (quoted in [4] p. 141) 

N(n)>=f, +f2+  ~ fq >= n + ~, {½[n/q]}. 
q~=3 q~=3 

The  second lower bound is greater than the one of the theorem in n - { n / 2 } -  

{½In/2]} which one readily proves to be [n/4]. The proof is done by considering 

the various cases of n = 4 m  + k, k =0,1,2,3.  

6.2. Next we obtain an asymptotic value for the sum S = Xq {½[n/q]}. We can 

write the sum for all q since for q-> n the terms are zero: 

THEOREM. S = Eq{½[n/q]} = E~:~[n/(2j- 1)] = ½n(logn + 2 y -  1 +log2) 

+ 0 (X/n), y the Euler constant. 

PROOF. For  ] > 1, cons ider  all integers q in the interval: 

n n 
2j  +----1 < q --- 2]  - 1 < or equ iva lent ly  2]  - 1 _-< _nq < 2]  + 1. 

For  these  q's  we  have  2]  - 1 -< [n/q] < 2] + 1, and there fore  [n/q] = 2j  - 1 or 2]. 
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Hence. {½[n/q }} = j. The number of these q's is [ n/(2j - 1 )} - [ n/(2j  + 1)]. Thus: 

. /I n 

To compute an asymptotic formula for the last sum, we use Dirichlet 

computation of E[/1 /v]= n logn + ( 2 7 -  1)n + O ( \ / n )  (e.g. [3] theorem 320): 

= [/1 log n + ( 2 , / -  1 ) n l -  51og5+ ( 2 , / -  1)5 + O ( ~ n )  

which completes the proof. 

Noticing that [n/4] = n/4+ 0(1) ,  we obtain from the last remark that: 

COROLLARY. Let ] % l = p  m°', then N ( n ) > = ~ n ( l o g n + 2 , / - ~ + l o g 2 )  

+ O ( ~ / n )  and note that 2 , / - ½ + 1 o g 2 _  -> 1.347> 1. 

7. Relations and generators 

Let G be a p-symplectic module and K a Lagrangian submodule. Let 

K = ( k , ) O " "  O (kr) be the cyclic decomposition of K, where (k~) is cyclic of 

order pt,, and invK = (f, . . . . .  fi), [~ >=[2>-_...>-_f,. We note that f, may be zero 
and then the corresponding group is a trivial group. 

7.1. We aim to describe ~ by a set of generators and relations using the exact 

sequence: 

A K 

(*) 0 , K , G ~ Iii ~0 

of (3.1): 

THEOREM. A symplectic module G, with a Lagrangian K whose invariants are 

(f~,f2 . . . . .  fi) has a set of 2r generators k,  i = 1 . . . . .  2r with the relations: 
(7.1.1) (i) pr, k, = 0  for i = 1,2 . . . . .  r, 

(ii) pr, k,+, = E~=l sqkj, i = 1 . . . . .  r, 

(iii) S = (s~) is a skew symmetric integral matrix with 

] s,i 1<-- ½ min(pI', ptJ ). 
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The skew form on G is given by: 

(iv) (k , ,k , )=O;  (kr÷,,k,) = - ( k , , k , ÷ , ) =  (5,,p-6. 

(k,+,, k,÷j) = - s,jp -(t'÷6) i,j = 1 . . . . .  r. 

Conversely, i[ G is an abelian group with the relations and generators given by 
(i)-(iii) then G is a p-group, and the definition (iv) makes  G a symplectic module 

with Lagrangian K generated by {k, . . . . .  k,}. 

PROOF. Let  G be symplectic,  with Lagrangian K = ( k l ) O " "  ~ ) (k , )  and let 
/ (  = (/(,)E~)'" "(~)(/(,) be its dual decomposi t ion;  then consider  the exact se- 

quence  (*) ment ioned  above.  

Since AK is a surjection, let k',÷~ ~ G be inverse images of the dual base/~,  i.e. 

Ar (k'~÷~)=/c,. Then,  by definition (k',÷, ki) = ~5~jp-6, and since/¢~ has order  pr,, we 

have pl, k',+~ E KerAK = K. Hence,  

pt'k;+, = ~'. s'~,kj. 

We have some f reedom in choosing k'r+, so let k';+~ = k'r÷, + Y~;~t x~jkj where  x~j 

will be de te rmined  later, then we have for arbi trary Y,i the relation 

t 

Pt'k'L' = i~= (s'~i + x,ip 6 + y~ip6)ki, i = l  . . . . .  r 

since p6ki = 0, and we still have AK(k';.~)= k. since E x~ikj E K = Ker AK. 

Next,  we choose the integers xi,,y~i so that 

s~j = s'o + x~iP 6 + y~jp 6 

will satisfy I s~il<=½min(pt,,p6), which is clearly possible. Note  also that if the 

chosen e lement  s~j satisfies I s~,l = ½ min(p t,, p6),  we do have the choice of the sign, 

and then we set so > 0 if i > j and so < 0 if i < j. Thus we obtain (i)-(iii), except  

the skewness  of S. Since K is isotropic we have (k~,kj) = 0, for 1 _-< i,j <- r. From 

the fact that Ar (k ' [ . , )= /~ ,  we obtain two parts of (iv). 

To  compute  (k'[.,, k'[.j) we observe  that 

p6 ( k';.,, k'[.i ) = ( k';.,,p6k'[.i ) = ~ sj~ (k';.,, k~ ) = st,p -6 (mod Z). 

Hence ,  

p6(k'~÷,,k"÷j)-sj~p -t, -- mj~, mj~ E Z ,  

(k'~÷, k'~+j) = sjip-(t'*6)+ m,~p-6. 
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The form is skew symmetric, i.e. (k%, k ' ; . i )= - (k ' ; . , ,  k';.~); we get by multiply- 

ing with pr,*r, 

s o + s,~ = - m i , p  t, _ m ~ j p  t,. 

If Is,j [ = Is j, I = ~min(pf',PlJ), then we have already chosen above s,, + sj~ = O. In 

other cases ]s~j [ < ½min(p~',p r') and therefore 

[m,,p r' + m,,p r' ] = Is,, + st, I<=ls,, I ÷ I s,, l<  min(pt',p t~) 

implies that s~, + sj~ = 0, i.e. S = (so) is skew symmetric and also 

(**) m, ip r' = _ miiprJ. 

Finally we set k,.~ = k';.~ + Y~, m,,k, .  This leads to 

/ ,k, . ,  = 2 s,,k, ÷ m,,p',k,-- 2 s,,k, 

since (**) yields that m,~pr, k,  = - m~,pl, k,  = 0. Also by (**): 

= sj~p-(r,÷9 + m~jp-I, _ mj~p% 

= sj~p -(r'%). q.e.d. 

The converse of our theorem follows by straightforward computations. 

7.2. The preceding result, though it determines G with the aid of K and a 

skew-symmetric integral matrix S, is hardly useful in dealing with problems 

about G, its invariants or its other Lagrangians. Nevertheless, it will suffice to 

give some necessary conditions for the invariants of the Lagrangians of a 
symplectic module of the form S~(H).  

To this end we recall relations between finitely generated abelian groups given 
by generators and relations and integral matrices. 

Let G be an abelian group generated by r elements gt . . . . .  g,. Consider the 

projection e : Z' ~ G given by e (e~) = g~ where e~ is the standard basis of Z'. It is 

well known that Ker e is a subgroup generated by r elements a~ = E;,., a~kek, 

i = 1 . . . .  , r. (Note that if G is not a torsion group, some of the ot~'s may be zero.) 

We refer to the integral matrix A = (a~) E AL (Z) as the matrix  o f  relations (with 

respect to the basis gt . . . . .  g,) (e.g. [6] Ch. III, p. 117). If G is a finite group, the 

matrix A is regular. 
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7.3. Two relation matrices A. B belong to the same group if and only if they 

are equivalent in alL(Z), i.e. B = PAO where P,Q are invertible matrices in 

.a, (Z). 

REMARK. Among all equivalent matrices A there is a unique diagonal matrix 

D =diag(d~,d.  . . . . .  d,) where d, I d,+, (d, >0) .  The elementary divisors di are 

determined by the condition that Di = d~d,_.., dj is the greatest common divisor 

of all j × j subdeterminants of the matrix A. 

Furthermore, G is then isomorphic to a direct sum of cyclic groups of orders 

dr, d, ~ ... . .  d~ (some dr may be 1). 
If G is a finite p-group, then each di is a p-th power, i.e. d~ =p~', 

gl<=g2<-_...<=g,. 

7.4. Let G = S,(H) be a symplectic p-module, and K be a Lagrangian 

submodule with i nvK=([ , , [2  . . . . .  /,), )c,_->[~_->...=>f,_->l and let i n v H =  

(e~,e2 . . . . .  e,) with e~ => . . .  > e~ => 1. 
For our matrix calculation we make the following notational changes: 

NO'rA'nONS. Since r = rkH<= rk K = s by Corollary 3.1, we add to H in- 

variants e~+~ . . . . .  e~ =0 ,  thus both invH=(e~ ,ez  . . . . .  e~) and invK will be 

vectors of the same length. 
We also denote by pE the diagonal matrix diag(p",p "~" . . . . .  p ' , )  and similarly 

p,~ = (pr,, .... pr~). 

These conventions yield for G = S~(H) two different types of sets of 

generators with two possibly different relation matrices in ~2~(Z): 
The form G = S~(H)= H O / - )  yields 2s generators {h,/~} and a relation 

diagonal matrix 

On the other hand, Theorem 7.1 gives 2s generators {ki} and the relation 

matrix 

J , /=  p0V . 

These two sets of generators and their matrices will be used in proving: 

7.5. THEOREM. If  K with inv K = (f~ .. . . .  [~) is Lagrangian in SI(H) and 

inv(H) = (el . . . . .  e,), then: 
(a) e~ + es-~ + ' " +  e~<=[~ + [s-~ + ' " +  [,, ]:or l <=t ~ <--s. 
(b) es+e~-~+'"+e, -1+½e,<=[s+[~- l+'"+[~- l+½[~,  [ or l<=t ~ <=s" 
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(c) f, + . . . +  f~,,+,<= e,,+, + e,,+.+ . . . +  e, o. for 20 + 1 <=s. 

(d) f , + . . . + f ~ _ , < - e , . ~ + . . . + e ,  , ,+! (e , ,+e  . . . .  ,), for 2p<=s. 

From the equality lH  I = [K[. we shall obtain respective inequalities. 

COROLLARY. (a') f, + " "  + f, N e, + - . .  + G. 

(b') f , + ' . . + f ,  , + ' f , < = e ~ + . - . + e ,  ,+~e, .  

(c') f , + . . . + f . , , > = ( e , + . . . + e , , ) + ( e ~  p , ,+e ,  , , + . . . + e ~ ) .  

(d') f t+ '"+f~_, ,  , > - ( e , + " + G  , )+~(e , ,+e  . . . .  , )+(e ,  , , + . . . + e ~ ) .  

Note that the order of G yields equality for # = 1 in (7.5a). 

PROOF. The matrices of relation d/t, 3/" of 7.4 are of the same order 2s, hence, 

by Remark 7.3, they have the same elementary divisors dj(~ff),dj(N). Also, the 

greatest common divisors Dj (,/g), D I (X) of all i x j subdeterminants of M and 2¢" 

respectively are the same (when taken positive). Moreover, since G is a p-group, 

the elementary divisors are p-th powers, and we can restrict all our calculation to 

the p-th exponents of various subdeterminants we shall be considering. 

Denote D;(W) = p~,C~); Di(dd) = p~/,) .  

The matrix W is diagonal and therefore its j x j subdeterminants are the 

product of j powers pe,,pe,~.., p%. Hence the g.c.d, of all these subdeterminants 

is the minimum product: p~, • p~, • p~ . . . . .  , and thus one readily observes that: 

(7.5.1) For j = 2 u ,  8 2 ~ ( W ) = 2 ( e ~ + ' " + e  . . . .  ~)=2E~ ~_..÷~e~, ~,= 1,2 . . . . .  s. 

F o r j = 2 u - l ,  &,. f f W ) = 2 ( e ~ + . . . + e  ..... ~)+e~ ,+, 

= 2(e~ + . . .  + e, ~+,)- e . . . .  ~. 

We have 6z, , (W)= 6~.(2¢')-e . . . .  ,=82o. ,)(?¢')+e~ ~+~. We point out that 

6 , ( N ) =  e~ and the sum in the brackets is taken to be empty, and we set 

6,,(X) = O. 

We can take the same subdeterminants in the matrix At which will give us 

determinants in which the diagonals will be pr, pr~pr~_,,pr,_,,.., and possibly 

there are non-zero elements below the diagonal. These may not give the g.c.d., 

but only an exponent _-> 3;(At)= ~i(W). 

Consequently for j = 2u we obtain 2(f~ + . . . +  f,_~+,)>-_2(e~ + . . . +  e ... . .  ,) 

which yields (a), and a similar computation for j = 2u - 1 proves (b). 

Next we consider subdeterminants of order j = s + v, u _-< s of At and W. The 

formulas (7.5.1) for 6j(3f) remain the same. A j x j subdeterminant At must 

contain at least u rows {i~} out of the first s rows, i.e. of the submatrix (pV 0). 

Similarly, also u columns {j,} out of the submatrix (~). Since the elements of pV 
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are in the diagonal, in order to obtain a non-zero subdeterminant of M, we must 

take in this subdeterminant the same {i, } columns, and the same {j, } rows of the 

matrix M. Let 1 < i ~ < i _ , < . . . < i . _ - < s  and similarly 

Thus the subdeterminant considered has the form: 

0 . . .pt , ,  . . . .  0 0 

Do.i)  = 

0 . . .pr,  o . . . .  0 0 

] = j , < h < ' . . < j . = s .  

I 

0 

0 . . . p 6 , . . .  0 

0 . . . p t , . . .  0 

As we are interested only in the power of p dividing Do.m we know also that 

for some D,.~) the highest power of p dividing the g.c.d. D~+,(M) will appear for 

some Dt,.i). Taking this particular determinant and developing it with respect to 

the first u rows and last u columns we will get by setting Do.j~ = pS(~J)c, c ~  O(p): 

6,o, = (f~, + " "  + f,,. ) + (fj, + " "  + fj. ) + 6' 

where p~' is the highest power of p dividing a subdeterminant or order 

(s + u ) - 2 u  = s - u .  By taking a lower bound for 6' and for the sums in the 

bracket, we get 

&*.(M)--> 2(F. +[~ , + ' " + / . - . + , ) +  &_.(M) 

since f~, _->/$ ,+, and 6 ' =  > 6~_.(~). 

Combining this inequality with the fact that 6i(M ) = 6 j ( N ) :  

2(f, +[,_, + . . .  + fs_,+O_- < & + , ( X ) -  &-.(X),  

we change notations and put p,  = s - u ;  then 

f. +~._, + ' . .  +f.+, _-< ½(a~ . ( ~ ) -  a. (x)). 

The values of 8i(W) are given in (7.5.1), from which we deduce: 

For /z = 2 0, 2 s - / x  = 2 ( s -  p ) a n d  note that 2 0 < s: 

f. + " "  + [20+, 62,(ar))  = e,. 
i =  1 

For / z = 2 o - l ,  2 s - ~ = 2 ( s - 0 ) + l  and note that 2 0-1--N_s: 
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L + + [:o --< ~(8: ._. ,+,(N)-  ~.o i(x))  

= ' (s_~, . . , (N)-  s . . (N) )+~(e .  + e~ o+,) 

i=0+l 

which completes the proof of the theorem. 

The corollary follows from the fact that n = f~ + • .. + [, = ej + .. • + e,, where 

p" = I KI = I HI,  and noting that left sides of (a)-(d) are n minus the sides of 

(a')-(d'). 

8. An application 

A problem suggested in [4] led to the question of determining the common 

Lagrangian of various symplectic modules. We shall be able to answer a question 

of this type later. First we deal with the converse: constructing various 

symplectic modules in which H is Lagrangian. One module of this type is 

S~(H) = H ~ I2I of Theorem 4.1. Another type is the following: 

Let inv H = (e~,e~ . . . . .  er), and assume r --2p is even (if not, set e,+,--0), and 

consider the abelian group Ht, with i n v H , =  (el + e2,e3+ e4 . . . . .  e,_, + er). We 

prove. 

8.1. THEOREM. S](Ho) is a symplectic module of 

rk S,(H,,) = 2 [ r k H  + 1 ] ,  

in which the original group H is Lagrangian. 

PROOF. Clearly rk S~(Ho) = 2 rk H,, = 2[(rk H + 1)/2]. If Ho = 

(ut) G " "  O (up) then S~(Ho) = ( u , ) @ " "  0 (uo)O ( t L ) O " "  @ (rio), and 

] S,(H,,) I = (p~-e,)2 = IHI2. 

Hence, in view of 3.1, Corollary (b), it suffices to identify H with an isotropic 

subgroup of SI(Ho). 
Indeed, consider the group 

n~ = (p':ul) 0 (pC, fi,) @ (p"u2) ~) (pe~ti2) ~ ) ' "  O (p"u, ) @ (P"-' fi, ). 

Its invariants are readily seen to be (e],e2,...,e,-~,e,), and, therefore, it is 

isomorphic with H. Next HI is isotropic and clearly we have only to check 

(p~,u~,p~,-,fi~) = - p'~,*~,-'t~(u~) = - 1 = 0 mod(Z) 
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since fi~(u,)= p ~,+e~, ,~. The  o ther  relat ions are trivial. 

NOTATION. Deno t e  by S2(H) the symplect ic  module  S,(H,,). 

REMARK 1. The  examples  S~(H) and S~(H) show that in Corol la ry  3.1a, the 

even rank  of the symplect ic  modules  G in which H is Lagrangian  can be ei ther  

equal  to 2rk H or as low as 2[(rk H + 1)/2]. 

Moreover ,  we can get var ious ranks  in be tween  by extending the const ruct ion 

of the last theorem.  

REMARK 2. Let  H = H ' O H "  and construct  the symptect ic  module  G ' =  
S~(H')O S.(H"). It is not ditficult to show as before  that there is a Lagrangian  in 

G '  i somorphic  with H. 

Note  also that  in the construct ion of H,, in our  theorem,  we could have used 

any pairing of the invariants  of H to obtain the cor responding  H,, and a 

symplect ic  module  in which H is Lagrangian.  

8.2. In our  next result, which is an applicat ion of the last t heo rem,  we make  

the convent ion  s = r = 2 k ,  and i n v K = ( f ,  . . . . .  f~), i n v H = ( e ,  . . . . .  e~). Since 

r_-> k, it means  that if rk K =- 1 (mod2)  we add f~ = 0, and also all ej = 0 for r < j 

where  r = rk H. 

In this context  we prove  

THEOREM. The group K is Lagrangian in both S,(H) and S._(H) if and only if 
r k K = r k H ,  or r k K = r k H + l  and then necessarily r k H  is odd, and the 

following holds : 

e2i i >= f2i- ,  >= ½(f2i , + f2i)  = ½(e2,-, + e2i) >-- f2, >-- e2i. 

Since K is Lagrangian  in S,(H), we have by (a') of the last corol lary PROOF. 

that  

f, + . . . +  f~, <-_ e, + . . . +  e,. 

K is assumed to be Lagrangian  in S2(H)= S,(Ho) with 

inv Ho = (e, + e2, e3 + e~ . . . . .  e_,k-, + e2k,0 . . . . .  0) where  s = 2k. 

Hence ,  it follows by (c') of the last corol lary  that  for p < k, 

f, + " "  +f2p => (e~ + e 2 ) + " "  +(e2p , + e2~,) + 0 

since s - p  + 1 > k. Apply ing  the two inequali t ies for p = 1 . . . . .  k shows that  

f2i-, + f2, = e2i-1 + e2i. 
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In view of this equality it follows from (a') by Corollary 7.5 choosing 

/s = 2i - l. that f2, ,--< e2, ~. Finally, from (b') Corollary 7.5 put /_t = 2i; we get 

- ! f~, < - ! e,~, since 

f,,+ f2,= f , , -  f2,, 
e = l  t , = l  

and similarly for the e's. Consequently f2, >= e2i. 

The relation between the ranks is proved as follows: if rk K ~  rk/4, since K is 

Lagrangian in S~(H), then rk K_-> rk H by Corollary 3.1. This, in view of the 

inequality of the theorem, means that the last v for which f~ > 0 must be even, 

and then we may have e,, = 0, which proves that then rk K = rk H + 1 ~- 0(rood 

2). 
To prove the converse it suffices to consider the case of two invariants, 

i nvH=(e , . e2 ) ,  invK=(f~ , f~)  (the case s = 2 )  satisfying the theorem, i.e., 

e, + e2 =.f, + f2, el >= f~ >= f2>= e2. 
We observe that in rid4 (Z) the diagonal matrix X = diag(pe,,pe,,p¢'-,p ~:) is 

equivalent to the matrix 

= I pr, 0 0 0 t 0 pr: 0 0 
0 pC: f ,  0 . 
_pC. 0 0 p~ 

One proves easily that dd can be transformed to diag(pe'-,pe'.',pr'+r'--e'--,p r,+t'--e'~) 
by elementary operations on rows and columns noting that e: =</~,. The matrix 

obtained is equivalent to N, since f, + f2 - e2 = e~. In view of 7.3 and Theorem 

7.1, it follows that K, whose invariants are (f,,fi_), is isomorphic with a 

Lagrangian of SffH).  
One can also obtain this by exhibiting this group K, i.e. the subgroup of S,(H) 

generated by the elements: 

k, = pC, r,l~, + h2, k2 = pe'-r:h~ + t~2 

and indeed, pr'kt = O, pt~-k2 = p~h2 = 0 since f2 => e2; and 

( k,, k._) = p2~,-r,-r:( ~,, h, ) + ( h2. l~._) = p~,-r,-r. _ p-,. = O, 

because f, + f2 = e, + e_.. 

The fact that K is also Lagrangian in Sf fH)  follows since both/4, ,  and K, are 

cyclic of order p~,+e: = pr,+r:, so S2(H)= S~(Ko), and the latter contains K as 

Lagrangian subgroup. 
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REMARK. The converse of our theorem follows also from the classification of 

Lagrangians of rk4 symplectic modules, given in the last proposition of 5.3. 

An immediate consequence is: 

8.3. COROLLARY. If H is a p-group whose invariants appear in pairs, then H 

is the only common Lagrangian of S~(H) and S2(H). 

9. p-regular groups 

9.1. The problem of a lower bound for the order of a p-group G satisfying 
(6.1n) seems to be difficult. In [4] p. 139 we have given the bound p2n-2 which is 

used to show that the Galois field splitting the universal division algebra of 

degree p~ must be of dimension _-> p2n-2 But this seems to be a too small bound. 

If G is abelian, a far more higher bound is given in Section 6. 

In the following we show that this bound is also valid for some general 

p-groups: the regular p-groups. 

A p-group G is a regular p-group if for every integer m and every a, b E G : 

(ab) :  = a : b : S f ' . . .  Sf" 

for appropriate elements S~ from the commutator subgroup ([2] p. 183). A large 

set of such groups are the p-groups of class < p, which include the abelian 

groups which are trivially regular. For these groups which satisfy (6.1n) we shall 

prove also the theorem of 6.1. 

9.2. NOTATION. Let I GI = p*, we denote g = I G J,p~. 

Given an abelian group K of order p" and invK = ([~ . . . . .  [,), f~ _->[~+,, we 

consider the partition n = f~ + f 2 + " "  + Is as a Young diagram Dr having f, 

squares in the j-th row; and the corresponding dual partition of n = 

[* + ' " + [ 7 ,  where f* is the length of the i-th column of the corresponding 

Young diagram Dr; in other words f'~ is the number of fj => i. 
Let G be a finite p-group containing a set of groups {K,} and let 

G = G,t>G2t>... t>G,t>G,+, = (e) 

be a composition series such that Gi/G~+, is an elementary p-abelian group. 

Then: 

PROPOSITION. I O Itp)--> X, Max~ rk((K~ f3 G,)I(K~ N Gi+,)). 
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PROOF. By induction on s. The quotient group Gt/G2 is a vector space over a 

finite field of p elements and G,/G~_ ~_ K, G2/G2 = K, / (K ,  N G2) for all A ; hence, 

] G,/G21,p, = rk(G,/G~)>= Maxrk (K , / (K ,  N G2)). 

On the other hand [G [(,, = [G,/G:I(p,. I G.l~p, and G2 D_ K, f) G2 for all A. The 

rest follows now easily. 

9.3. One of the main properties of regular p-groups is that 

G ~ = { g E G ; g ~ "  =e}  

form a normal subgroup of G ([2]). This is used in proving: 

THEOREM. Let G be a regular p-group containing a set of abelian groups { K, } 

such that invK, = (f,, . . . . .  f~), f,, >_-.[~,+~ >-0; then 

I > E E 

Indeed, consider the sequence G = G.E>G. , t>. . . t>G,t>Go=(e)  with (3,. 

defined above. Note that in this case 

K~ fqGj = (K~)~ = { g E K ~ , g  p' =e}.  

Also rk((K,)i/(K,)j ,) - number of f~v which are _-> .L i.e.. 

rk((K, )~/(K~ )i-,) = f*~J, 

since if K, = ( k , , ) + . . . + ( k , ~ )  then 

(K, ), = (pt* '- tk , , )~" " @ ( p " ' - i k ~ , ) ~ ( k , , + , ) ~ "  ", 

where f,, > j _-> f,,+l and so 

(K, )j/(K, ),_, = (pr,,-q~, ,) ~ ) . . .  @ (pt,, ,~, ) ~ .  . . ~ (~,,) 

where f,, > j - 1 => f,,+,. It follows, therefore, by the preceding proposition that 

I GI(,,=> E, Max, f*,. 

It remains to prove the equality of E~ Maxff*~ = E Max~f~. To this end, set 

F, = Max, f,,, then clearly F, ~ F2 ~ " "  => F~. Let m -- F, + . . .  + E. This partition 

of m yields a Young diagram D~ which is clearly characterized as the minimal 

Young diagram containing all diagrams D, corresponding to the partition 

n - - f , ~ + . . . + f ~ .  But from this point of view, considering the DF to be 

determined by their columns f ' j ,  DF will have columns of order F'~ = Max, f ' j ,  

and then m = F* + . . .  + F* proves our assertion. 
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9.4. We can now extend Theorem 6.1 to regular p-groups. 

THEOREM. If G is a regular p-group containing a Lagrangian of every 

symplectic module of order p", then 

I a [~,,,->- ~ ~ = 5(log n + c )+  o(~/~). 

Indeed, consider the set of symplectic modules {Go} defined in the beginning 

of 6.1. By assumption, the group G contains a Lagrangian Kq of G,. Let 

invK~ = ([q,,[, . . . . . .  /~,,...), then as in Lemma 6.1 we obtain [~ >-{![n/q]}. It 

follows now from the previous theorem (in 9.3) that 

> 2Maxr  --> = q  E q 

The rest follows now from Theorem 6.2. 

In the application of [4] theorem 7.4, it was noted that the Galois group of a 

splitting field of the generic division algebra of degree p" contains a Lagrangian 

of every simplectic module of order p". Since every p-group of order =< p" is 

p-regular,  one readily verifies that: 

COROLLARY. Galois splitting fields of the universal division algebra UD(p",  k) 

with n <= p have dimension over the center >= p,~log,+c)l>otx ,) 

REMARK. One can replace the undetermined O(XTnn) in the theorems of 6.2 

and 9.4 and their corollaries by - 2 ( ~ n  + 1). This can be obtained by a closer 

analysis of the Dirichlet approximation of E [n/v] ,  e.g. in [3] theorem 320, used 

in these theorems. 
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